1268

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 4, APRIL 2022

Deep Learning Based Program Generation From

Requirements Text: Are We There Yet?

Hui Liu™, Mingzhu Shen, Jiaqi Zhu, Nan Niu*, Ge Li, and Lu Zhang

Abstract—To release developers from time-consuming software development, many approaches have been proposed to generate
source code automatically according to software requirements. With significant advances in deep learning and natural language
processing, deep learning-based approaches are proposed to generate source code from natural language descriptions. The key insight
is that given a large corpus of software requirements and their corresponding implementations, advanced deep learning techniques may
learn how to translate software requirements into source code that fulfill such requirements. Although such approaches are reported to be
highly accurate, they are evaluated on datasets that are rather small, lack of diversity, and significantly different from real-world software
requirements. To this end, we build a large scale dataset that is composed of longer requirements as well as validated implementations.

We evaluate the state-of-the-art approaches on this new dataset, and the results suggest that their performance on our dataset is
significantly lower than that on existing datasets concerning the common metrics, i.e., BLEU. Evaluation results also suggest that the
generated programs often contain syntactic and semantical errors, and none of them can pass even a single predefined test case.
Further analysis reveals that the state-of-the-art approaches learn little from software requirements, and most of the successfully
generated statements are popular statements in the training programs. Based on this finding, we propose a popularity-based approach
that always generates the most popular statements in training programs regardless of the input (software requirements). Evaluation
results suggest that none of the state-of-the-art approaches can outperform this simple statistics-based approach. As a conclusion, deep
learning-based program generation requires significant improvement in the future, and our dataset may serve as a basis for future

research in this direction.

Index Terms—Software requirements, code generation, deep learning, data set

1 INTRODUCTION

OFTWARE development is the process of writing and main-

taining source code according to software require-
ments [1]. The resulting source code is in turn compiled
automatically into executable applications that finally fulfill
the requirements. However, with the increase in software
complexity, software development is often expensive and
error-prone [1] although many engineering approaches have
been proposed to guide the development.

To release human beings from challenging, time-consum-
ing, and error-prone software development (especially cod-
ing), many approaches have been proposed to generate
source code automatically. During the last twenty years of the
twentieth century, researchers proposed mathematics-based
formal methods [2], [3] and tools [4], [5] to generate source
code automatically according to formal specifications [6], [7].
Although formal methods are highly reliable, it remains

e Hui Liu, Mingzhu Shen, and Jiaqi Zhu are with the School of Computer
Science and Technology, Beijing Institute of Technology, Beijing 100081,
China. E-mail: {liuhui08, 3120181025, zhujiaqi }@bit.edu.cn.

e Nan Niu is with the Department of Electrical Engineering and Computer
Science, University of Cincinnati, Cincinnati, OH 45221 USA.

E-mail: nan.niu@uc.edu.

o Ge Li and Lu Zhang are with the Key Laboratory of High Confidence
Software Technologies, Ministry of Education, Peking University, Beijing
100871, China. E-mail: lige@pku.edu.cn, zhanglu@sei.pku.edu.cn.

Manuscript received 27 Apr. 2020; revised 31 July 2020; accepted 18 Aug. 2020.
Date of publication 21 Aug. 2020; date of current version 18 Apr. 2022.
(Corresponding author: Hui Liu.)

Recommended for acceptance by H. Rajan.

Digital Object Identifier no. 10.1109/TSE.2020.3018481

challenging to create formal specifications that should be
described in formal languages, e.g., Z [8]. Consequently,
researchers turn to less formal approaches, e.g., Model Driven
Architecture (MDA) [9]. MDA attempts to generate source
code [10] according to models described in modeling lan-
guages, e.g., Unified Modelling Language (UML) [11]. UML
is a graphical modelling language, and shares most of the con-
cepts with object-oriented programming languages. Conse-
quently, developers are willing to use UML compared to
formal languages. However, because UML models usually
focus on the architecture of the system under development, it
is quite often that MDA generates nothing but sketch (e.g., sig-
natures of methods) of the system. Detailed implementation,
especially the body of methods, still has to be typed in manu-
ally in most cases. Extending UML with action semantics [12]
makes it possible to present more detailed semantics in UML
models, and thus we may generate more complete source
code from UML models. However, they often employ DSMLs
instead of general-purpose languages. It is also challenging
and time-consuming to construct action semantics with the
extended UML.

With significant advances in deep learning, researchers are
turning to learning-based approaches to generate source code.
The key insight of such approaches is that given a corpus of
software requirements and their corresponding implementa-
tion (source code), advanced deep learning techniques may
learn how to translate software requirements into source code
that fulfill such requirements [13], [14]. Existing approaches
have successfully generated source code from software
requirements in natural language descriptions [15], [16],

0098-5589 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Peking University. Downloaded on January 05,2025 at 18:12:53 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6223-2542
https://orcid.org/0000-0001-6223-2542
https://orcid.org/0000-0001-6223-2542
https://orcid.org/0000-0001-6223-2542
https://orcid.org/0000-0001-6223-2542
https://orcid.org/0000-0001-5566-2368
https://orcid.org/0000-0001-5566-2368
https://orcid.org/0000-0001-5566-2368
https://orcid.org/0000-0001-5566-2368
https://orcid.org/0000-0001-5566-2368
https://orcid.org/0000-0001-8304-7055
https://orcid.org/0000-0001-8304-7055
https://orcid.org/0000-0001-8304-7055
https://orcid.org/0000-0001-8304-7055
https://orcid.org/0000-0001-8304-7055
mailto:liuhui08@bit.edu.cn
mailto:3120181025@bit.edu.cn
mailto:zhujiaqi@bit.edu.cn
mailto:nan.niu@uc.edu
mailto:lige@pku.edu.cn
mailto:zhanglu@sei.pku.edu.cn

LIU ET AL.: DEEP LEARNING BASED PROGRAM GENERATION FROM REQUIREMENTS TEXT: ARE WE THERE YET?

images of Graphical User Interface (GUD) [17], [18], and input-
output examples [19], [20]. In this paper, we focus on natural
language requirements (requirements text) because in most
cases software requirements in the industry are described in
natural languages [21]. Deep learning-based code generation
approaches have been reported to be highly accurate. For
example, the syntactic neural model (SNM) proposed by Yin
and Neubig [22] reaches a high Bilingual Evaluation Under-
study (BLEU) [23] (0.845) in translating natural language
descriptions into Python programs. In contrast, Google neural
machine translation (GNMT), the widely used state-of-the-
practice language translator, results in much smaller BLEU
(0.4) in translating English into French [24]. For example, if the
reference translation is “I know tomorrow is another day” and the
generated translation is “I know tomorrow is a new day”, the
resulting BLEU is 0.42.

However, such deep learning-based code generation
approaches have not yet been extensively evaluated, which
prevents us from knowing the state of the art. The reported
evaluation of such approaches is often conducted on datasets
that are rather small, lack of diversity, and significantly dif-
ferent from real-world software requirements. For example,
the widely used dataset HS [14] is composed of source code
(and the associated ‘requirements’) from a single software
project, which results in poor diversity. The average length
of the source code in dataset Django [25] is 33 characters
only, suggesting that the software programs in the dataset
have very limited complexity. Natural language descriptions
in dataset CoNaLa [16] are how-to questions automatically
extracted from Stack Overflow, instead of real-world software
requirements. As a result, evaluating existing approaches on
such datasets may fail to reveal the state of the art.

To this end, in this paper, we build a large scale dataset and
evaluate deep learning-based code generation approaches on
it. Compared to existing datasets, our dataset is composed of
longer and more comprehensive software requirements
accompanied by their validated implementations (source
code). We also develop an assisting tool to assess comprehen-
sively the quality of the generated source code instead of sim-
ply counting the lexical similarity between the generated
source code and reference implementations. The benefits of
this dataset and its assisting tool are twofold. On one side, we
can reassess the state of the art of deep learning-based code
generation with the resulting dataset and assisting tool. On
the other side, the resulting data set may serve as a publicly
available training/testing dataset for future research in code
generation. Lacking of large scale and high-quality datasets is
preventing deep learning-based code generation approaches
from reaching their maximal potential. The resulting dataset
is an initial attempt to solve this problem.

We reassess the state of the art in code generation with our
new dataset. Evaluation results suggest that the performance
of the state-of-the-art approaches on our dataset is signifi-
cantly lower than that on existing datasets. The programs
generated by such approaches are significantly different
from reference implementations, often contain syntactic and
semantical errors, and fail to pass even a single predefined
test case. We replace the input (requirements) with random
noise, and the performance of the evaluated approaches is
still comparable to that before the replacement. It may sug-
gest that the evaluated approaches learn little from software

1269

requirements. Further analysis of the generated source code
suggests that most of the successfully generated statements
are popular statements in the training programs. Based on
this finding, we propose a popularity-based approach that
always generates the most popular statements in the training
programs regardless of the input (software requirements).
Evaluation results suggest that none of the state-of-the-art
approaches can outperform this simple statistics-based
approach.
The paper makes the following contributions:

e A large scale dataset for learning-based code genera-
tion. Compared to existing ones, it is larger and has
improved diversity as well as validated programs.
Besides that, the requirements in the dataset are lon-
ger than those in existing datasets.

e An assisting tool kit to assess the quality of gener-
ated programs. Unlike existing approaches that
heavily rely on lexical similarity, the tool kit employs
static syntactic checking, dynamic cross-validation,
and lexical comparison to comprehensively assess
the quality of generated source code.

e A comprehensive reassessment of the state of the art
of deep learning-based code generation. Based on
the new dataset and associated tool kit, we evaluate
the state-of-the-art approaches. Evaluation results
suggest that the generated programs are significantly
different from references, and none of them can pass
even a single test case associated with the dataset. It
may suggest that deep learning-based program gen-
eration requires significant improvement in the
future. Our dataset, as well as the assisting tool, may
serve as a basis for future research in this direction.

The rest of the paper is structured as follows. Section 2

introduces related research. Section 3 introduces how we
construct a new dataset. Section 4 specifies how we assess
the state-of-the-art approaches on the resulting dataset
whereas Section 5 presents the results. Section 6 discusses
related issues. Section 7 makes conclusions.

2 RELATED WORK

2.1 Generating Source Code From
Requirements Text

As introduced in the preceding section, automatic genera-
tion of source code from requirements text has recently
been a hot topic in both software engineering and artificial
intelligence communities. To reduce the complexity of code
generation, researchers try to limit the complexity of pro-
gramming languages. As a result, many code generation
approaches employ domain-specific languages (DSLs) to
describe the generated source code [26], [27], [28], [29].
DSLs are much simpler than general-purpose programming
languages, and thus DSL-based approaches often result in
high accuracy in generating source code. However, DSLs
are specific to predefined domains, and it is challenging to
apply them to other domains [14].

Compared to DSLs, generating source code in general-
purpose programming languages is more challenging.
However, employing such languages results in a number of
significant advantages [14]. First, such languages, e.g., Java,

Authorized licensed use limited to: Peking University. Downloaded on January 05,2025 at 18:12:53 UTC from IEEE Xplore. Restrictions apply.

1270

are well-known and widely used by developers, and thus
developers can read and modify the generated source code
expediently. Second, such languages are broadly applicable
across domains. Third, such programming languages have
better expression ability than DSLs, and thus could describe
complex applications. Because of such significant advan-
tages, researchers have proposed a number of approaches to
generating source code in general-purpose programming
languages [14], [22], [29], [30]. Ling et al. [14] propose a latent
predictor network-based approach (called LPN) to generate
source code in Python or Java. Evaluation results on MTG,
HS, and Django suggest that the approach is accurate and
the average BLEU is up to 0.776. To the best of our knowl-
edge, it is the first one that generates source code in general-
purpose programming languages. Yin and Neubig [22] pro-
pose a syntactic neural model (SNM), which for the first time
leverages the syntax of target language as prior knowledge.
Later, they propose TRANX that generalizes SNM from
Python to other languages [31]. Rabinovich et al. [29] propose
an abstract syntax network-based approach (called ASN). To
the best of our knowledge, they are the first to employ multi-
ple decoders in code generation, where different types of ele-
ments in abstract syntax trees are generated by different
decoders. Stehnii [30] proposes a tree-to-tree model for code
generation. The key insight of the approach is that require-
ments in English could be parsed into trees as well, and the
parsing can help neural networks to better understand the
requirements. Dong and Lapata [32] propose a structure-
aware neural architecture (called Coarse-to-Fine) for code
generation. They are the first to divide the decoding process
of code generation into two stages: generating a sketch on
the first stage, and generating other information (e.g., varia-
bles and parameters) on the second stage. Hayati et al. [33]
propose an approach called ReCode. For the first time, they
leverage the nearest neighbors for code generation. The key
insight of the approach is that two highly similar require-
ments are likely to result in highly similar implementations.
GrammerCNN [34] proposed by Sun et al. is the first to
employ CNN-based decoders in code generation. Their eval-
uation results suggest that their approach improves the state
of the art by five percentage.

Text-based code generation is also a hot topic in the soft-
ware engineering community. Gvero and Kuncak [35] pro-
pose an approach, called anyCode, to synthesize Java
expressions from free-form queries containing a mixture of
English and Java. The purpose of anyCode is to help develop-
ers, especially new developers, to achieve a task of interest
by leveraging related APIs. For example, the developer may
type in “copy file fname to bname” where fname and fname are
given file names. AnyCode would return Java expressions
like “FileUtils.copyFile(new File(fname), new File(bname))”. For
a given query, anyCode selects a set of most likely API decla-
rations according to the query and unigram models. After
that, anyCode leverages probabilistic context free grammar
and unigram model to unfold the declaration arguments of
the selected APIs. Raghothaman et al. [36] propose another
approach, called SWIM, to generate code snippets for given
API-related natural language queries such as “generate md5
hash code”. Different from anyCode that generates a single
expression, SWIM can generate a code snippet containing a
few statements. SWIM maps textual query into a set of APls

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 4, APRIL 2022

by leveraging a statistical model. To construct code snippets
from the suggested APIs, SWIM collects structural call
sequences for each API data type in projects on Github. From
such pre-extracted call sequences, SWIM retrieves the one
that is most similar to the suggested APIs based on cosine
similarity. T2API proposed by Nguyen et al. [37] is also a sta-
tistics-based approach to synthesize API code snippets from
textual queries. It differs from SWIM in the following
aspects. First, it conducts context expansion to expand the
related APIs. For example, if Socket.open() is in the initial set
of APIs associated with the given query, T2API will add
Socket.close() as related APIs as well because it frequently fol-
lows Socket.open(). Second, T2API presents code snippets as
graphs, and generates code graphs instead of retrieving
graphs/code snippets from a given library. Consequently, it
may generate new API usages. Yan et al. [38] build a dataset
and its associated tools for fair and convenient comparison
among different query-based code search methods. Such
approaches differ from the evaluated approaches in that
they are often confined to APIs [35], [36], [37] and generate
short code snippets (or even a single expression) only. As a
result, they are not suitable for our scenario and thus they
are not involved in the evaluation in Section 4.

2.2 Datasets for Code Generation From
Requirements Text

It is well recognized that high-quality datasets are critical
for learning-based code generation [14]. Consequently,
researchers have built a number of datasets that contain tex-
tual description (requirements) as well as their implementa-
tions (source code). Table 1 presents an overview of existing
datasets. The first column presents the names of the data-
sets. The second column presents a short explanation. The
third column presents the program languages employed to
describe the programs. The fourth and fifth columns present
the numbers of software requirements and software pro-
grams, respectively. The last two columns present the aver-
age length of requirements and programs, respectively.
Sample items (both requirements and their corresponding
implementations) are presented in Table 2.

According to the programming languages involved in the
datasets, existing datasets could be classified into two catego-
ries. The first category of datasets (i.e., ATIS, GEO, JOBS, and
IFTTT) describes source code in domain-specific languages.
ATIS [13] was initially built to evaluate air travel information
systems. It is composed of database queries in English and the
source code to accomplish the queries. Later, it is employed as
a dataset for code generation [28] where the queries are taken
as software requirements and the Lambda style source code is
taken as reference implementation. GEO [39] and JOBS [15]
are similar to ATIS [13] in that all of them are composed of
database queries and their accomplishing source code in
DSLs. IFTTT [40] is another DSL-based dataset. Source code
(applets) within IFTTT follows a predefined pattern: IF this
THEN that, and it is the reason why the dataset is called
IFTTT. Such kind of applets are widely used to control devices
(e.g., watches, smart phone, and lights). These DSL-based
datasets together have significantly advanced research in
code generation [28]. However, such datasets are domain-spe-
cific, and thus models trained on such datasets may not work
in other domains.

Authorized licensed use limited to: Peking University. Downloaded on January 05,2025 at 18:12:53 UTC from IEEE Xplore. Restrictions apply.

LIU ET AL.: DEEP LEARNING BASED PROGRAM GENERATION FROM REQUIREMENTS TEXT: ARE WE THERE YET? 1271
TABLE 1
Existing Datasets for Requirements Text-Based Code Generation
Dataset Explanation Programming #REQs # Programs Average Length of Average Length of
Language REQs (in tokens) Programs character/LOC
ATIS database query of Lambda-style 5,373 5,373 11 64/1
traveling info DSL
JOBS database query of jobs Prolog-style 640 640 9 5271
DSL
GEO database query of Lambda-style 880 880 7 4571
geography DSL
IFTTT IF-this-THEN-that If-Then 86,960 86,960 7 62/1
applets Recipes
MTG features from Magic the Java 13,297 13,297 58 981/31.4
Gathering
HS features from Hearthstone Python 665 665 34 300/ 7.4
Django pseudo-code vs. code Python 18,805 18,805 14 33/1
Pyth 1,441 2,169 10 247/10.1
StaQC how-to questions yon
SQL 1,221 2,056 10 2187102
CoNalLa how-to questions Python 2,879 2,879 14 39/1.1

*REQs: Requirements.

The second category of datasets (i.e., Django, MTG, HS,
StaQC, and CoNaLa) describes source code in general-pur-
pose programming languages, e.g., Java and Python. Oda
et al. [25] propose an automatic approach to generating
pseudo-code from source code. They collect source code
(Python statements) of a Python web framework called
Django (available at https://www.djangoproject.com/),
and generate pseudo-code automatically for each of the
downloaded Python statements. Such Python statements
accompanied by corresponding pseudo-code are later
employed as code generation dataset [14], [22], [30], [30].
Different from Django that is a byproduct of a pseudo-code
generation approach, MTG and HS are intentionally built
for code generation [14]. MTG is built on a trading card
game called Magic the Gathering [41]. Each item in MTG is
composed of two parts: Textual description of a card (in
English) and the source code associated with the card. HS is
highly similar to MTG. The only difference is that HS is
based on another card game called Hearthstone [42]. MTG
and HS are frequently used in code generation tasks [14],
[22], [29], [30]. Different from MTG and HS that are built on
a given software project, StaQC [43] and CoNaLa [16] are
created by mining QA forums (e.g., Stack Overflow [44]), i.e.,
extracting how-to questions and their code fragments in
accepted answers.

Although such datasets employ general-purpose program-
ming languages, they still have the following limitations:

e First, software requirements included in such datasets
are essentially different from real ones in the industry.
The ‘requirements’ in Django are pseudo-code that is
highly similar to the associated source code. Such
pseudo-code is significantly different from require-
ments text. Translating requirements text into source
code is much more challenging than the translation
from pseudo-code to source code. Although programs
in MTG are longer than those in our dataset, the
‘requirements” in MTG (and HS as well) are rather spe-
cial: all of the ‘requirements’ in the dataset together

constitute the real complete requirements for a single
application (Magic the Gathering). Consequently,
models trained on MTG can generate only additional
source code (i.e., expansion) for the given program. It
is unlikely for them to generate programs that are
irrelevant to the given program (Magic the Gather-
ing). The ‘requirements’ in StaQC and CoNala are
automatically extracted how-to questions that are sig-
nificantly different from common requirements text.

e Second, the requirements and their associated source
code may not match exactly. For example, the source
code extracted automatically from QA forums may
not exactly fulfill the how-to questions in S5taQC and
CoNalLa.

e Finally, as shown in Table 1, programs within such
datasets are rather short. It may suggest that pro-
grams in such datasets are of limited complexity.

As a result of the limitations, models trained on such
datasets may fail to generate complex implementation for
real-world software requirements. Assessing the state of the
art on such datasets also suffers from significant threats to
external validity.

2.3 Code Generation Based On Examples and
Contexts

Code complete is to generate code expressions or short code
snippets based on contexts, e.g., the source code preceding
the locations where the suggested code should be inserted.
Type-based code complete is widely supported by IDEs.
For example, while developers type in “System.”, IDEs like
Eclipse would suggest a list of members (fields and meth-
ods) that could be accessed via System. More advanced
approaches, like statistical language models, have been pro-
posed to improve the accuracy of code complete [45], [46].
Such approaches are based on the assumption that source
code, like natural languages, is likely to be repetitive and
predictable [47]. To this end, the statistical language models,
like n-gram, are employed to predict the next token or the
next expression in code complete. Besides such generic

Authorized licensed use limited to: Peking University. Downloaded on January 05,2025 at 18:12:53 UTC from IEEE Xplore. Restrictions apply.

https://www.djangoproject.com/

1272

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 4, APRIL 2022

TABLE 2
Sample Requirements and Implementations From Existing Datasets
Dataset Sample Requirements Corresponding Implementations
ATIS dallas to san francisco leaving after 4 in the | (lambda $0 e (and (>(departure time $0) 1600:ti) (from $0 dallas:ci) (to $0 san francisco:ci)))
afternoon please
JOBS what microsoft jobs do not require a bscs? answer(company(J, ‘microsoft’), job(J), not((req deg(J, ‘bscs’))))
GEO what is the population of the state with the | (population:i (argmax $0 (state:t $0) (area:i $0)))
largest area?
TRIGGER:Weather - Current temperature drops below - ((Temperature (58)) (Degrees in (f)))
IFTTT Turn on heater when temperature drops be-
low 58 degree ACTION: WeMo Insight Switch - Turn on - ((Which switch? (*”)))
public class MoxJet extends CardImpl {
public MoxJet(UUID ownerld) {
super(ownerld, 262, “Mox Jet”, Rarity. RARE, new
NAME: Mox Jet CardType[]CardType. ARTIFACT, “{0}")
ar e[]Car c. s N
ATK: NIL P 7P
this.expansionSetCode = “LEA”;
DEF: NIL
this.addAbility(new BlackManaAbility());
COST: 0 }
DUR: NIL
MTG public MoxJet(final MoxJet card) {
TYPE: Artifact
. super(card);
PLAYER_CLS: Limited Edition Alpha }
RACE: 262
@OQverride
RARITY: R blic MoxJ 01
ublic MoxJet co
TAP: Add B to your mana pool. P Py
return new MoxJet(this);
}
}
NAME: Acidic Swamp Ooze
ATK: 3 = =
class AcidicSwampOoze(MinionCard):
DEF: 2
def __init__(self):
COST: 2
DUR: -1 super().__init__(“Acidic Swamp Ooze”, 2, CHARACTER_CLASS.ALL,
HS) CARD_RARITY.COMMON, battlecry=Battlecry(Destroy(),
TYPE: Minion W Sel E - -
eaponSelector(EnemyPlayer
PLAYER_CLS: Neutral P o e
def create_minion(self, player):
RACE: NIL
return Minion(3, 2)
RARITY: Common
Battlecry: Destroy your opponent’s weapon
Django call the function conf.copy, substitute it for | params = conf.copy()
params.
L Lo . def clamp(n, minn, maxn):
StaQC How to limit a number to be within a speci-
fied range? return max(min(maxn, n), minn)
CoNalLa | How to convert a list of multiple integers | r = int(‘’.join(map(str, x)))
into a single integer?

code complete approaches, some task-specific approaches
have been proposed successfully to suggest specific tokens,
like method names [48], [49] and arguments [50]

Code generation is also closely related to program syn-
thesis that generates programs automatically according to
input/output examples [51], called programming by exam-
ples [52]. For example, researchers have successfully synthe-
sized string editing programs according to input/output
examples [53], [54]. Feng et al. [55] propose a component-
based approach to synthesis scripts from examples for table
consolidation and transformation tasks. Feng et al. [56] pro-
pose a conflict-driven program synthesis technique that
learns from past mistakes. Lee et al. [57] accelerate search-

based program synthesis using learned probabilistic mod-
els. A systematic review of search-based program synthesis
is available at [52]. Neural network-based program synthe-
sis is one of the most promising directions in program
synthesis [51], [58]. Balog et al. [59], however, propose Deep-
Coder that combines neural network-based program synthe-
sis and search-based program synthesis. Their evaluation
results suggest that the combination leads to an order of
magnitude speedup over the Recurrent Neural Network
approaches. The performance of such learning-based pro-
gram synthesis approaches depends heavily on the perfor-
mance of training data [58]. To improve the quality of
training data, Shin ef al. [58] propose an automatic approach

Authorized licensed use limited to: Peking University. Downloaded on January 05,2025 at 18:12:53 UTC from IEEE Xplore. Restrictions apply.

LIU ET AL.: DEEP LEARNING BASED PROGRAM GENERATION FROM REQUIREMENTS TEXT: ARE WE THERE YET?

AR
@

______ Data Removing
Programming Collection Duplication
Contest Platforms

D F ______ Cross Static
U ALSEY J Validation Checking

Fig. 1. Dataset creation.

to generate a high-quality dataset so that models trained on
the resulting dataset could learn the full semantics of the
selected DSL.

Representation of source code is also closely related to
code generation [60]. The intuitive and straightforward
representation of source code is to take it as natural lan-
guage text (tokens) [47]. However, such plain text-based
representation ignores the semantics of programs and the
structures of source code. To this end, new approaches have
been proposed to represent source code based on abstract
syntax trees (AST) [60]. More advanced approaches can
event leverage the paths within the AST trees [61], [62] and
dependency among different source code elements [63].

3 NEw DATASET

As introduced in Section 2.2, existing datasets are prevent-
ing deep learning-based code generation approaches from
reaching their maximal potential. To this end, in this sec-
tion, we build a new dataset, as well as an assisting tool kit,
for learning-based code generation.

3.1 Overview

Fig. 1 presents an overview on how we create the dataset for
code generation. First, we extract task descriptions (software
requirements) and their associated submissions from pro-
gramming contest platforms. Second, we detect and remove
duplicate tasks and duplicate implementations from the
resulting dataset. Third, we compile the downloaded source
code to make sure that the remaining source code is compil-
able. Third, we apply cross-validation to exclude incorrect
implementations. Details of the creation are presented in the
following sections.

3.2 Data Collection

We collect data from two programming contest platforms,
i.e., Codeforces [64] and HackerEarth [65] because of the
following reasons:

e First, the contests (software requirements) and their
corresponding submissions (source code) on such
platforms are publicly available;

e Second, the contests cover different topics instead of
being confined to a specific domain, which may
increase the diversity of the resulting dataset;

e Third, such platforms have manually designed test
cases for each of the contests to ensure the correct-
ness of the submissions, which may reduce the likeli-
hood to include incorrect implementations in the
resulting dataset;

e Finally, the contests are moderately challenging for
automatic code generation. On one side, they are

1273

much more complex than most of the existing datasets
whose implementation is often composed of only a
couple of lines. Consequently, compared against exist-
ing datasets, the resulting dataset is more complex. On
the other side, such contests are intentionally designed
for beginners, and thus the complexity is limited. The
limited complexity makes it potentially practical for
deep learning techniques to generate the source code
automatically.

With a Python-based crawler, we collect programming
tasks (in English) from the selected platforms. We also collect
their submissions (implementations) that have passed all of
the associated test cases. The submissions are described in
different programming languages, e.g., Java, Python, and C/
C++. Comments within the source code are removed auto-
matically because we focus only on code generation in our
current work. Notably, for a single contest, there are often a
large number (hundreds) of submissions. We only download
its first N submissions for each programming language. This
number (empirically set to ten) is a result of the balance
between the diversity of implementations and the size of the
resulting dataset. We manually check the diversity of imple-
mentations (i.e., differences in algorithms, program struc-
tures, and identifiers) and find that the diversity increases
significantly when N increases from 1 to 10 whereas the
diversity increases slightly when N increases from 10. Con-
sequently, we empirically set N to 10. Notably, the diversity
of dataset is not to increase the challenges in code generation,
but to prevent overfitting of machine learning models.

An illustrating example task' is presented as follows:

You are given array consisting of n integers. Your task is
to find the maximum length of an increasing subarray of
the given array. A subarray is the sequence of consecutive
elements of the array. Subarray is called increasing if each
element of this subarray strictly greater than previous.
Input: The first line contains single positive integer n —
the number of integers. The second line contains n posi-
tive integers ay, as, . .., a, (1 < a; < 10%).

Output: Print the maximum length of an increasing sub-
array of the given array.

3.3 Removing Duplication

First, we detect and remove duplicate or nearly duplicate
tasks from the resulting dataset. To avoid the pairwise com-
parison among thousands of tasks, we employ the well-
known fingerprint algorithm SimHash [66] to transform tex-
tual description of each task into a fixed-length hash value
(called fingerprint). The algorithm guarantees that finger-
prints of nearly duplicate texts differ from each other in a
small number of bit positions [66]. For each pair of the highly
similar fingerprints, we manually check the corresponding
tasks to exclude duplicate tasks only. Manual checking is
conducted because two different tasks may happen to be lex-
ically similar to each other, but the functionality of the
intended software applications are essentially different. Con-
sequently, the first two authors manually check the highly
similar tasks. Two tasks ts; and ts, are duplicate if applica-
tions conforming to ts; conform to ts; as well, and vice versa.

1. http:/ /codeforces.com/problemset/problem/702/A

Authorized licensed use limited to: Peking University. Downloaded on January 05,2025 at 18:12:53 UTC from IEEE Xplore. Restrictions apply.

http://codeforces.com/problemset/problem/702/A

1274 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 4, APRIL 2022
TABLE 3
Resulting Dataset
Dataset Explanation #REQs # Programs Programming | Average Length of | Average Length of
Language REQs (in tokens) Programs
character/LOC
20,554 C 458 /35.7
ReCa f.rom 5.149 35,092 C++ 185 5781372
programing contests 32,306 Java 1,121/ 63.8
16,673 Python 205/13.9

Second, we detect and remove duplicate implementations.
For each of the tasks, we compare each pair of its submissions
to exclude duplicate or nearly duplicate submissions. The
comparison is based on the well-known edit distance [67]
between two source code fragments:” if the distance is small,
i.e.,, changing a few characters in one fragment can turn it into
the other fragment, they are reported as potentially redundant
implementations. Before removing such potentially duplicate
implementations, the first two authors also manually check
them to exclude false positives: two implementations of the
same task are duplicate if and only if they are identical except
for the difference in format (e.g., blank lines) and/or code
comments.

3.4 Static Checking

Both of the websites have a long history, and thus some of
the old submissions to the websites may be out of date and
cannot be compiled with the up to date compilers. Assum-
ing that up-to-date code generation approaches may target
up-to-date compilers only, we filter out such outdated sub-
missions by compiling them with the up-to-date compilers.

By compiling the submissions, we also remove low-quality
submissions that result in warnings. Such submissions could
be compiled and thus may be executed. However, warnings
(e.g., dead code) reported by compilers suggest that such sub-
missions deserve improvement. Consequently, to guarantee
high-quality of the resulting dataset, we exclude such submis-
sions that result in compiler’s warnings. The exclusion, in
turn, may improve the quality of code generation models
trained on the resulting dataset (i.e., fewer compiler’s warn-
ings on the generated source code).

3.5 Cross-Validation by Software Testing

One of the biggest challenges in building code generation
datasets is to guarantee that the included programs act
exactly the same as what their associated software require-
ments specify. In other words, such programs should be
accepted as correct implementations by users who propose
the requirements. In our case, all submissions are specifi-
cally designed for the given tasks, and the websites have
run some manually predefined test cases to guarantee that
the submissions satisfy the requirements in the most com-
mon scenarios. This helps to improve the reliability of the
resulting dataset. However, the number of such manually
designed test cases is rather small, and thus it is likely that
some buggy submissions can still pass such test cases.

2. More advanced tools like MOSS (http://theory.stanford.edu/
aiken/moss/) may ease the work.

To further improve the reliability, we carry out cross-val-
idation by software testing. For each of the task ¢, the cross-
validation is conducted as follows:

e First, according to the requirements we manually
create a template to specify the input parameters,
including their data types and value ranges.

e Second, based on the template, we automatically cre-
ate test cases with fuzz testing, i.e., create random
data as inputs to the programs under test.

e Third, for each test case, we automatically run each
of the submissions (to the given task t) with the
inputs in the test case. If the submissions result in
different outputs, we manually check the results and
remove the buggy submissions.

Notably, we do not employ popular test case generation
tools like EvoSuite. The downloaded programs often receive
input from console with statements like ‘input()’ (Python)
and ‘scanf (C/C++). However, existing test case generation
tools like EvoSuite generate test cases (more specially, input
of the programs) according to parameters instead of console
input. As a result, applying such tools to the downloaded
programs results in few test cases. To this end, we manually
create a template for each task to explicitly specify its input
(including those from console), and generate test cases auto-
matically based on the template.

3.6 Resulting Dataset

We call the resulting dataset large scale dataset for Require-
ments text based Code generation (ReCa). Details of the dataset
is presented in Table 3. By comparing Table 3 against exist-
ing datasets in Table 1 (especially MTG, HS, Django, StaQC,
and CoNala that describe implementations in general-pur-
pose programming languages), we observe that our dataset
has the following advantages:

e First, ReCa is composed of longer requirements of
independent software applications. The average
length of requirements in our dataset is significantly
longer than that of existing datasets. As analyzed in
the preceding sections, the textual descriptions in
MTG, HS, Django, StaQC, or CoNala are not real-
world software requirements. Instead, they are incre-
mental features of a single software project (MTG
and HS), pseudo-code (Django), or how-to questions
(StaQC and CoNala). In contrast, each of the textual
descriptions in our dataset represents a requirement
of an independent software application. Software
engineers have developed the intended applications
successfully according to such textual descriptions.

Authorized licensed use limited to: Peking University. Downloaded on January 05,2025 at 18:12:53 UTC from IEEE Xplore. Restrictions apply.

http://theory.stanford.edu/

LIU ET AL.: DEEP LEARNING BASED PROGRAM GENERATION FROM REQUIREMENTS TEXT: ARE WE THERE YET?

e Second, ReCa contains more programs. Our dataset
contains more than one hundred thousand software
programs, much larger than existing datasets.

e Third, ReCa has longer programs. For example, the
average length of Java programs in our dataset is
63.8 (LOC), much longer (at least twice) than that of
existing datasets. Notably, however, such programs
are still significantly smaller than real-world soft-
ware applications in the industry. These real-world
applications may contain millions of lines of source
code, which makes them extremely challenging (if
not impossible) to be generated automatically by up-
to-date deep learning models.

e Fourth, the implementations in ReCa are in multiple
general-purpose programming languages. For most
of the requirements in our dataset, we provide corre-
sponding implementations in different programming
languages at the same time, e.g., Java and Python. It
may facilitate the research on cross language code
generation, as well as research on the impact of pro-
gramming languages on code generation.

e Fifth, the implementations in ReCa are validated.
Each of the implementations in our dataset has been
validated by static checking as well as dynamic soft-
ware testing to guarantee that they satisfy the
declared requirements and they are of high quality.

e Sixth, ReCa provides multiple implementations for
the same requirements. A single requirement has up
to ten independent implementations in the same lan-
guage (e.g., Java). Trained on such a dataset, learn-
ing-based code generation algorithms may learn
equivalence among different code fragments, and
thus may be smarter in appreciating the context while
generating the next code token. Multiple reference
implementations also facilitate more reasonable and
more comprehensive quality assessment on gener-
ated programs by comparing them against diverse
references. Existing approaches often assess the qual-
ity of a generated program by computing its lexical
similarity (e.g., BLEU) with a single reference because
existing datasets often provide a single reference
only. The assessment is risky because two semanti-
cally equivalent programs may happen to be signifi-
cantly different in text. Providing a number of
diverse references helps to reduce the risk.

3.7 Quality Assessment and Tool Kit

To facilitate research on code generation, we develop an
assisting tool to comprehensively assess the quality of gen-
erated programs. The tool computes automatically a list of
quality metrics for the generated program against its refer-
ence programs. The first quality metrics are BLEU (bilingual
evaluation understudy) [23] that is widely employed by
existing approaches. BLEU was initially proposed to assess
the quality of machine translation [23]. For code generation,
BLEU scores are calculated by comparing the generated
source code against a set of reference programs. The scores
range between 0 and 1, suggesting how lexically similar the
generated program is to the reference programs. Notably,
BLEU for a generated program p is the maximal similarity
(BLEU) between p and any of its reference programs: If it is

1275

highly similar (or even identical) to any of its reference pro-
grams, the generated program is of high quality even if it is
essentially different from other reference programs.

The second code metrics are the number of errors and
warnings compilers produce on the generated source code.
Existing approaches rarely employ such metrics because
most of the generated source code cannot be compiled suc-
cessfully at all, i.e., they often contain syntactic errors. One of
the reasons for such syntactic errors is that most of the refer-
ence programs (e.g., code fragments from Stack Overflow) in
existing datasets are incomplete and thus cannot be compiled
successfully. Consequently, code generation models trained
on such datasets rarely generate compilable programs.

The third code metrics are the percentage of passed test
cases, i.e., what percentages of the test cases the generate pro-
gram has passed. In our dataset, we have generated automat-
ically a large number of test cases for each of the tasks
(requirements). Consequently, we can run such test cases on
the generated programs to assess the extent to which the gen-
erated programs satisfy the functional requirements.

The fourth quality metrics are the edit distance-based lexi-
cal similarity. Levenshtein distance is widely employed to
measure the minimum number of single-character edits (i.e.,
insertions, deletions, or substitutions) required to change
one text (the generated source code in our case) into the other
(reference implementation in our case). The edit distance-
based lexical similarity (noted as S.q) turns the Levenshtein
distance (note as dis) into a similarity varying from zero to
one: Seq(ge,ref) = 1—dis(ge,ref) /max(|gc|, |ref|) where gc
is the generated source code and ref is a reference
implementation.

BLEU is selected because it is widely employed by exist-
ing approaches to evaluate the quality of code genera-
tion [23]. The number of compiler errors and warnings (the
second metrics) is selected because it represents the syntactic
quality of the generated source code. The percentage of
passed test cases (the third metrics) is selected because it rep-
resents the functional quality of the generated source code.
The edit distance is selected because it is widely used to mea-
sure the similarity between source code. BLEU and edit dis-
tance concern the lexical similarity between generated
programs and references whereas the number of compiler
errors and the percentages of passed test cases concerns the
syntactics and functionality of the generated programs,
respectively. Consequently, employing such diverse metrics
facilitates comprehensive assessment of the generated pro-
grams. To facilitate more comprehensive assessment, how-
ever, the tool kit also provides additional metrics, i.e., NIST,
WER, and Subtree Metric [68].

We employ additional quality metrics (as introduced in
preceding paragraphs) besides BLEU for assessing the quality
of generated source code because of the following reasons:

e First, although BLEU is frequently employed to assess
the quality of generated source code, it has significant
limitations [69] for assessing source code. Unlike
nature languages, source code has less tolerance for
noise and poor syntax/semantics. Consequently, pro-
grams with high BLEU could be syntactically incorrect
and essentially different from reference programs in
semantics.

Authorized licensed use limited to: Peking University. Downloaded on January 05,2025 at 18:12:53 UTC from IEEE Xplore. Restrictions apply.

1276

e Second, even the implementations for the same task
(requirements) are often diverse in text. Conse-
quently, computing the lexical similarity between
the generated source code and its diverse reference
implementations may fail to reveal the quality of
code generation.

4 EXPERIMENTAL SETUP

As introduced in Section 2, researchers have achieved
great advances recently in deep learning-based code gen-
eration. A number of approaches have been proposed, and
evaluation results on different datasets suggest that they
are highly accurate. For example, the syntactic neural
model proposed by Yin and Neubig achieves a high BLEU
(0.845) on Django dataset [22], which suggests that the gen-
erated source code is very close to the reference implemen-
tation. However, as introduced in the preceding sections,
such datasets employed in the evaluations have significant
limitations and thus good performance on such datasets
may not necessarily lead to good performance in handling
real-world software requirements. To assess the state of
the art, in this section we evaluate such approaches on our
new dataset.

4.1 Validation Questions
The evaluation investigates the following questions:

e QI: How accurate are the state-of-the-art approaches
on the new dataset?

e (2: How often do the generated programs pass syn-
tactic checking?

e (Q3: How often do the generated programs pass pre-
defined test cases?

e (4: Is the generated source code useful for
developers?

e (Q5: Where and why do state-of-the-art approaches
succeed?

e (6: To what extent do state-of-the-art approaches
understand software requirements?

e (7:Can we propose a simple and intuitive approach
whose performance is comparable to (or even better
than) that of the state-of-the-art approaches?

e (08: Can we improve the performance of the evalu-
ated approaches if we keep only a single solution per
requirement?

e (9: Can we improve the performance of the evalu-
ated approaches by unifying identifiers in require-
ments and associated source code?

Research question Q1 concerns the performance of the
state-of-the-art approaches on our new dataset. Many of the
state-of-the-art approaches are reported to be highly accu-
rate on existing datasets [22]. Answering this question may
reveal whether the reported high performance is owned to
the limitations of the involved datasets.

Research question Q2 investigates how often the deep
learning-based approaches generate syntactically correct
programs, and how often such programs could be executed
without exceptions. Investigating Q2 would reveal to what
extent such approaches learn automatically the syntax of
target programming languages.

Authorized licensed use limited to: Peking University. Downloaded on January 05,2025 at 18:12:53 UTC

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 4, APRIL 2022

Research question Q3 investigates to what extent the gen-
erated programs are semantically correct, i.e., consistent
with the given software requirements. The investigation
would reveal to what extent the approaches can learn the
semantics of requirements that are described in English,
and turn such semantics into implementations.

Research question Q4 investigates the usefulness of the
generated programs. It is likely that developers cannot use
the generated code as-is. However, if the effort to modify it
to make it work is much smaller than the effort to write the
correct code from scratch, the generated source code (and
the generation approaches) could be considered useful.

Research question Q5 investigates what kind of tokens
could be generated correctly, and potential reasons for the
success. The investigation will reveal the strength of exist-
ing approaches, and the rational for the strength.

Research question Q6 investigates the influence of the
input (textual requirements) on the output (generated source
code). It is challenging for computers to fully understand
natural languages. Consequently, it is likely that the deep
learning-based code generation approaches cannot fully
understand the requirements in English. Answering this
question may reveal whether natural language understanding
is the major obstacle to deep learning-based code generation.

Research question Q7 concerns the substitutability of the
state-of-the-art deep learning-based complex approaches.
Answering this question may reveal whether such deep
learning-based complex approaches are really better (or
much better) than simple and intuitive approaches.

Research question Q8 concerns the effect of removing
redundant implementations for the same requirement.
While answering the preceding research questions, we pro-
vide the evaluated approaches with multiple code snip-
pets/solutions for the same requirement. However, this has
not been done by the authors of the evaluated approaches
and the loss function of the approaches is not prepared for
this. Consequently, such neural networks may fail to learn
anything from such different implementations. To this end,
we repeat the evaluation after removing the redundant
implementations, i.e., we keep only a single solution per
requirement.

Research question Q9 concerns the identifiers in require-
ments and their associated implementation (source code). Such
identifiers do not influence the syntax or semantics of pro-
grams. However, replacing them with unified tokens e.g., var
and wvar;, could significantly reduce the size of vocabularies
employed by automated code generation approaches. Research
question Q9 investigates the effect of the preprocessing.

4.2 Evaluated Approaches

We select Seq2Seq [28], SNM [22], Tree2Tree [30], TRANX [31]
and Coasr-to-Fine [32] for the evaluation because of the fol-
lowing reasons.

e First, they could generate source code in general-
purpose programming languages according to soft-
ware requirements in English, which makes it practi-
cal for them to work on our dataset.

e Second, their implementation is publicly available,
which significantly facilitates the evaluation. Some

well-known apProaches [14], [29], [34] that could
rom IEEE Xplore. Restrictions apply.

LIU ET AL.: DEEP LEARNING BASED PROGRAM GENERATION FROM REQUIREMENTS TEXT: ARE WE THERE YET?

generate source code from requirements text are not
selected for evaluation because we either fail to get
their implementations [14], [29] or fail to make them
work on our dataset [34].

e Third, SNM [22], Tree2Tree [30], TRANX [31] and
Coarse-to-Fine [32] were proposed recently, and
represent the state of the art. To the best of our
knowledge, they are the latest approaches that 1)
have publicly available implementations and 2) can
work on our dataset to generate Python programs
according to requirements text.

e Although Seq2Seq [28] was initially proposed for
semantic parsing, it is widely employed as a baseline
in code generation [33]. Consequently, we include it
for the evaluation as well.

4.3 Process
To investigate questions Q1, Q2, Q3, and Q5, we conduct
the first empirical study as follows:

e First, we select all tasks for evaluation from our data-
set that are accompanied by Python source code. To
the best of our knowledge, no publicly available
deep learning-based models/implementations can
transform requirements text into programs in gen-
eral-purpose programming languages other than
Python. Although LPN [14] generates Java pro-
grams, its implementation is unavailable. Conse-
quently, we select only Python programs for the
empirical study. The resulting dataset is noted as
selected dataset. It is composed of 2,740 tasks (require-
ments) and 16,673 Python programs.

e Second, from the selected dataset, we randomly
select 300 tasks as testing dataset, 200 tasks as valida-
tion dataset, and other as training dataset.

e Third, the selected dataset is preprocessed. For the
textual requirements, we leverage NLTK [70], [71] to
replace acronyms (e.g.,” what’s”) with separated
words (e.g., “what is”), to turn characters into lower-
case, to split the text into a sequence of word by
word segmentation and special characters (e.g., split-
ting “Java.System” according to “.”), to remove stop
words, and to apply lemmatization on the resulting
words. For example, the requirement:

“Some natural number was written on the board.
Its sum of digits was not less than k. But you were
distracted a bit, and someone changed this number
to n, replacing some digits with others. It's known
that the length of the number didn’t change.You
have to find the minimum number of digits in
which these two numbers can differ.”

is finally turned into:

“some natural number write on board. its sum of
digit not less than k. but you distract bit, someone
change number to n, replace some digit with others.
it know length of number do not change. you have
to find minimum number of digit in which these
two number can differ.”

after the preprocessing. For the selected source code,
we remove comments and copyright declarations, and

1277

Listing 1. Example of Source Code Preprocessing

1 |/* Code before preprocessing */:
2 | #_get_number

3 | we=_int(input())

4 | ifw%2 ==_0O_and._w!=2:

5 | coprintCYES’)

6 |else:

7 | coprintCNO’)

8

9

/* Code after preprocessing */:
10 | w=_int(input())
11 |ifowo% 2 ==_0_and_w_!=_2:

12 | ceeoprintCYES’)
13 | else:
14 | .ecprintC’NO’)

format the source code (with Autopep8 [72]). Listing 1
presents an illustrating example of source code pre-
processing: the code before and after preprocessing.

e Fourth, for each of the selected approaches, we train
it on the training and validation datasets, and test it
on the testing dataset.

e Finally, we evaluate the quality of generated source
code with the tool kit introduced in the preceding
sections. The quality metrics generated by the tool kit
are subsequently employed to answer the research
questions.

To maximize the potential of the evaluated approaches,
we perform hyper parameter tuning for each of the evalu-
ated approaches. Basically, we follow the grid-search tuning
approach [73] but pick up grids (i.e., to-be-tested values of
parameters) dynamically and empirically to speed up the
tuning process. Notably, for each of the to-be-tested setting,
we train the selected approach with the given setting on the
given training data (all of the requirements-code pairs
regardless of their topics), and then validate the performance
on the validation set. Based on the validation, we empirically
select the next to-be-tested setting. For a given setting, we
train the associated approach with the setting once and for
all (instead of repeating the training and validation for sev-
eral times) because the training is highly time-consuming:
For each of the evaluated approaches, it takes more than one
week to tune its hyper parameters on a GPU server (OS:
Ubuntu 14.04.5; CPU: 56 * Intel(R) Xeon(R) CPU E5-2683 v3
@ 2.00GHz; GPU: 2* TITAN Xp; RAM: 64GB). The final
parameters are presented in Table 4 where N/A suggests
that the implementation of the given approach does not con-
tain the parameter or the parameter does not deserve tuning,.

To investigate question Q4, we randomly select eleven
tasks from the dataset and invite thirty developers to con-
duct a controlled experiment. The participants have rich
experience in Python. They did not know the intent of the
experiment in advance, which helps to reduce potential
bias. The experiment is conducted as follows:

e First, each of the participants is requested to code
from scratch for a selected task (noted as preTest-
Task), and we record the time that developers take to
finish the assigned task. Notably, a task is finished
only if the submitted program has passed all prede-
fined test cases. The top five (who spend the shortest

Authorized licensed use limited to: Peking University. Downloaded on January 05,2025 at 18:12:53 UTC from IEEE Xplore. Restrictions apply.

1278

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 4, APRIL 2022

TABLE 4
Final Parameters for Evaluated Approaches

Parameters
Embedding Size HiddenSize Epoch BatchSize Decoder Dropout Learning Rate Learning Rate Decay
Approaches

Seq2Seq 200 N/A 120 20 04 0.01 0.98
SNM 256 256 100 7 0.4 0.001 N/A
Tree2Tree 300 256 100 8 0.2 0.001 N/A
TRANX 128 256 100 10 0.3 0.001 05
Coarse-to-Fine 250 N/A 75 10 0.3 0.002 0.99
TABLE 5
Evaluation Results on Our Dataset
Approaches BLEU on New BLEU on BLEU on Syntactically Correct Executable Functionally Correct
Dataset Django HS Programs Programs Programs
Seq2Seq 0.138 0.673 0.550 44.7% 6.0% 0%
SNM 0.188 0.845 0.758 93.0% 16.7% 0%
Tree2Tree 0.150 0.825 0.716 83.7% 14.3% 0%
TRANX 0.184 0.856 0.695 81.7% 9.0% 0%
Coarse-to-Fine 0.176 0.854 0.640 10.0% 2.7% 0%
Average 0.167 0.811 0.672 62.6% 9.7% 0%

time in finishing the given task) and the bottom five
(who spent the longest time) are excluded from fur-
ther evaluation. The other twenty participants are
divided into two equally sized groups according to
their coding speed: participants in Group A is faster
than anyone from Group B. The purpose of this step
is to construct two participant groups where partici-
pants within the same group have similar coding
speed. Grouping the participants by coding speed
may reduce the bias introduced by the difference in
participants” programming ability /speed.

e Second, for each of the selected participants, we
request him/her to code from scratch for five out of
the remaining ten tasks (i.e., all selected tasks except
for preTestTask), and to complete the other five tasks
based on programs generated by SNM. SNM is
selected because it achieves the best performance
among the evaluated approaches (see Section 5.1 and
Table 5 for details). The assignments of the tasks guar-
antee that exactly half of the participants from each
group finish a task from scratch and another half the
participants from the same group finish the same task
by modifying the generated program.

e Third, we record the time that developers take to fin-
ish the assigned tasks, and analyze the results of the
two groups.

To investigate question Q6, i.e., to what extent the input

(software requirements) is exploited by code generation
approaches, we conduct the third empirical study as follows:

e First, for each of the selected approaches, we train it
on the training and validation datasets, and test it on
the testing dataset (noted as tdata). We compute
their performance, and call it original performance
(noted as F,,). Notably, it is the same as we do in
the previous empirical study.

e Second, for each item (composed of requirements and
their implementations) in the testing dataset tdata, we
replace the requirements with random noise. The

noise is generated automatically by picking tokens
randomly from a large corpus. The length (in tokens)
of the noise is equal to the original requirements. The
resulting testing dataset is noted as tdata’.

e Third, on the revised testing dataset tdata’, we evalu-
ate the resulting models that are trained on the first
step. The resulting performance (noted as P,is.) is
compared against the original one (i.e., F,.;).

If replacing requirements with random noise fails to
reduce the performance significantly, it is likely that the code
generation approaches learn little from the requirements.

To investigate question QS, i.e., the effect of removing
redundant implements, we conduct the fourth empirical
study as follows:

e First, for each of the tasks in the dataset, we randomly
select and keep one of its implementations. Other
implementations are removed from the dataset. We
call the resulting dataset as nonredundant dataset

e Second, we repeat the first empirical study on the
nonredundant dataset.

e Third, we compare the resulting performance on
nonredundant dataset against that on the original data-
set where multiple implementations for the same
tasks are exploited.

5 RESULTS AND ANALYSIS

5.1 Q1: Significant Reduction in BLEU
To answer question Q1, we evaluate the state-of-the-art code
generation approaches on our new dataset, and evaluation
results are presented in Table 5. The first column presents
the evaluated approaches. The second column presents
BLEU of such approaches on our new dataset. To facilitate
comparison, we also present their BLEU on existing datasets
(i.e., Django and HS) on the third and fourth columns. Col-
umns 5-7 present the syntactical and semantic checking
results of the generated source code (on our dataset).

From the first four columns, we make the following
observations:

Authorized licensed use limited to: Peking University. Downloaded on January 05,2025 at 18:12:53 UTC from IEEE Xplore. Restrictions apply.

LIU ET AL.: DEEP LEARNING BASED PROGRAM GENERATION FROM REQUIREMENTS TEXT: ARE WE THERE YET?

m map (int, input().split()) bl

= m, m = map(int, input().split())
[[] for x in range(n + 1)] el

@ = list(map(int, input().split()))
ans = 0
for i in range(n):

ans += a[i]

1n,
2En=
3lfor i in range(m):

4 X, y = map(int, input().split())
5 e[x].append(y)
6l
7
8]

(GRS

e[y] .append (x)
c = set(range(l, n + 1))
[val = 2**n
9while c:
10| s = c.pop()
11 dfs = [s]
12 val //= 2
13] while dfs:
14 cur = dfs.pop()

15 for nxt in e[cur]:

16| if nxt in c:

17| dfs.append (nxt)

18| c.remove (nxt)

19print (val) 6print (ans)

Fig. 2. Visual comparison between reference implementation (left) and
generated program (right).

e First, BLEU of the evaluated approaches is rather
low. It varies from 0.138 to 0.188, with an average of
0.167. Such a low BLEU suggests that the generated
source code is often significantly different from refer-
ence implementations, i.e., the validated implemen-
tations in the dataset.

e Second, switching from existing datasets to our new

dataset reduces BLEU significantly. The average
BLEU is reduced significantly from 0.811 (on Django)
and 0.646 (on HS) to 0.167. The reduction is up to
79%=(0.811-0.167)/0.811, and 75%=(0.672-0.167)/
0.672, respectively.

To figure out the reason for low BLEU, we employ diff, a
popular and powerful tool, to visualize the difference
between the generated programs and their references. A typ-
ical example is presented in Fig. 2. The right part of the figure
presents the program generated by SNM. The left part
presents a reference implementation that has the greatest
BLEU with the generated one. The common part (i.e., suc-
cessfully generated statements) is shown on white back-
ground. Missing part (i.e., statements that should have been
generated) is shown on red background, added part (i.e.,
statements that should not have been generated) is on green
background, and the modified part is on yellow background.

We randomly sample 100 generated programs for visual
comparison. Based on the comparison, we make the follow-
ing observations:

e First, most statements are not generated successfully.
Around 75 percent of the statements in reference
programs are missing in the generated programs.
For example, in Fig. 2 sixteen out of the nineteen
(84%=16/19) lines of source code in the reference
implementation are on red background, suggesting
that the evaluated approach fails to generate the
majority of the reference implementation.

e Second, most of the generated source code is irrele-
vant, i.e.,, having no counterparts in the reference
implementations. Around 81 percent of the gener-
ated source code is irrelevant (on green background).
For example, in Fig. 2 three out of the six (50%=3/6)
lines of source code in the generated program are on
green background.

To validate whether the observations could be general-
ized to all generated programs, we compute automatically
how often tokens in reference implementations are missed
(i.e., shown on red or yellow background), and how often

1279

TABLE 6
Mismatch Between Generated Programs and References

Approaches Missing Tokens Irrelevant Tokens
Seq2Seq 81.8% 87.5%
SNM 71.2% 74.8%
Tree2Tree 75.4% 81.0%
TRANX 74.4% 81.5%
Coarse-to-Fine 81.6% 88.5%
Average 76.9% 82.7%

tokens in the generated programs are irrelevant (i.e., shown
on green or yellow background). Results are presented in
Table 6. The first column presents evaluated approaches.
The second column presents the percentages of the tokens
in the reference programs that are missed by the generated
programs. The third column presents the percentages of the
tokens in the generated programs that are irrelevant, i.e.,
having no counterparts in the reference implementations.
From this table, we observe that on average, 76.9 percent of
the tokens in reference implementations are missed, and
82.7 percent of the tokens in generated programs are irrev-
erent. In other words, only 23.1%(=1-76.9%) of the tokens in
the reference implementations are generated successfully,
and only 17.3%=(1-82.7%) of the generated programs tokens
are really useful. The statistics confirm our preceding obser-
vation that the generated programs are often significantly
different from references.

We also employ additional metrics [68] (i.e., NIST, WER,
and Subtree Metric) besides BLEU. Evaluation results are
presented in Table 7. The results confirm the conclusions
drawn on the preceding paragraphs: the performance of the
evaluated approaches is not promising on the new dataset.

One potential cause of the low accuracy could be the
irregularity of the tokens in the dataset. If tokens in the test-
ing dataset are often missing in the training dataset, it is
likely that machine learning model cannot generate tokens
accurately. To this end, we compare the vocabularies of the
training dataset and testing dataset. The comparison results
suggest that 96 percent of the (requirements) text tokens in
the testing dataset are actually observed in the training
dataset whereas 79 percent of the source code tokens are
observed in the training dataset. The results may suggest
that the difference in vocabularies of training data and test-
ing data is not the major reason for low accuracy.

It is quite intuitive that the longer the text and programs
are, the lower the generation accuracy would be. To quantita-
tively verify this, we partition the tasks into four equally
sized groups according to their length of requirements and
length of reference programs, respectively. Notably, for a
single task, we have multiple reference implementations
(programs). Consequently, we classify the task based on the
average length of its reference programs (instead of the
length of a single reference program). Evaluation results are
presented in Tables 8 and 9. On Table 8, we present how the
length of requirements influences the performance (BLEU).
Q1 contains 75=300/4 tasks that have the shortest require-
ments whereas Q4 contains 75 tasks with the longest require-
ments. Each row of the table presents the performance
(BLEU) of an evaluated approach on different groups of
tasks. From this table, we make the following observations:

Authorized licensed use limited to: Peking University. Downloaded on January 05,2025 at 18:12:53 UTC from IEEE Xplore. Restrictions apply.

1280

TABLE 7
Evaluation Results with Additional Metrics

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 4, APRIL 2022

TABLE 9
Impact of Programs’ Length on BLEU

Metrics NIST WER Subt Ceneth of
ubtree
Approaches Reference Q1 Q2 Q3 Q4
ograms
Seq2Seq 1.369 8.089 0.117 Approaches
SNM 1.453 0.785 0.200 PP
Tree2Tree 1.185 0.866 0.139 Seq2Seq 0150 | 0.181 | 0.146 | 0.076
TRANX 1.721 1.179 0.160 SNM 0287 | 0240 | 0.170 | 0.054
Coarse-to-Fine 1.988 1.643 0.116 Tree2Tree 0.257 0.192 0.120 0.029
Average 1.543 2513 0.146 TRANX 0223 | 0231 | 0.194 | 0.088
Coarse-to-Fine 0.173 0.215 0.201 0.116
e First, all of the evaluated approaches result in the low- Average 0.218 | 02118 | 0.1662 | 0.0726

est performance on Q4 group that is composed of the
longest requirements. It may suggest that extremely
long requirements (varying from 228 tokens to 391
tokens) have significant negative impact on the per-
formance of code generation.

e Second, all of the evaluated approaches result in the
highest performance on Q2 group where the length of
requirements varies from 125 tokens to 171 tokens. In
contrast, they result in significantly lower perfor-
mance on Q1 that is composed of the shortest require-
ments (varying from 16 tokens to 125 tokens). The
results may suggest that the following assumption is
not necessarily true: the shorter the requirements text
is, the higher the generation accuracy would be.

Table 9 presents the influence of programs’ length where
Q1 contains 75 tasks with the shortest reference programs.
From this table, we observe that the performance decreases
with the increase of programs’ length. The average BLEU
reduces from 0.218 on Q1 (where the length of programs
varies from 6 tokens to 77 tokens) to 0.0726 on Q4 (where
the length of programs varies from 199 to 822 tokens). The
evaluation results may suggest that the length of programs
has a significant negative impact on the performance of
automated code generation.

Based on the preceding analysis, we conclude that con-
cerning the common performance metrics (i.e., BLEU) the
state-of-the-art code generation approaches cannot reach a
high performance on the new dataset as they do on existing
datasets. Concerning other performance metrics like NIST,
WER, STM, and Subtree metrics, the evaluated approaches
also result in poor performance on the new dataset. Most
tokens in reference implementations are missed whereas
most of the generated tokens are irreverent. One possible
reason for the significant reduction in performance is that

TABLE 8
Impact of Requirements’ Length on BLEU
Length of
equirements Q1 Q2 Q3 Q4
Approaches
Seq2Seq 0.131 0.157 0.141 0.125
SNM 0.195 0.214 | 0.185 0.156
Tree2Tree 0.155 0.173 0.146 0.125
TRANX 0.198 0.204 | 0.177 0.158
Coarse-to-Fine 0.164 0.192 0.182 0.167
Average 0.1686 | 0.188 | 0.1662 | 0.1462

the new dataset is more complex and more diverse than
existing ones.

5.2 Q2: Syntactic Checking

To answer question Q2, we conduct syntactic checking on
the generated programs. The checking is composed of two
parts. In the first part, we conduct static syntactic checking
on the generated programs with the state-of-the-practice tool
Pylint [74]. For convenience, we call programs that pass the
static checking as syntactically correct programs. In the second
part, we try to execute the programs (with sample input
specified in the requirements) that pass the static checking
on the first step. If the execution results in any syntactic error
or runtime exception, the programs are non-executable.
Results of the static syntactic checking are presented in the
fifth column of Table 5 whereas the execution results are pre-
sented in the sixth column. From these two columns, we
make the following observations.

The first observation is that most (up to 93.0 percent) of
the programs generated by AST-based approaches (.e.,
SNM, Tree2Tree, and TRANX) pass the static syntactic
checking whereas programs generated by other approaches
have significantly smaller chance (less than fifty percentage)
to pass the static syntactic checking. The results may suggest
that generating ASTs (and then transferring them into source
code) helps much in avoiding syntactic errors. In contrast,
generating source code (as generic text) directly is much risk-
ier because the state-of-the-art approaches could not yet
automatically recognize the complete syntax of program-
ming languages that is embedded in the training programs.

To figure out what kind of syntax such approaches fail to
learn automatically, we manually analyze the syntactic
errors generated by such approaches. In general, the syntac-
tic checking on generated programs (i.e., to compute how
many of the generated programs are syntactically correct
and how many of them are executable) is completely auto-
mated, and no manual checking is required. Manual check-
ing is only employed to empirically reveal the common
syntax errors in the generated programs. The results of the
manual analysis suggest that undefined-variable is dominat-
ing. Undefined variable refers to usage of variables that
have not yet been defined before the usage. An illustrating
example is presented in Fig. 3 where s on Line 7 is undefined.
Undefined-variable accounts for 59, 78, 70, 53, and 82 percent
of the syntactical errors generated by Seq2Seq, SNM, Tree2-
Tree, TRANX, and Coarse-to-Fine, respectively. On average,
it accounts for 68%(=2003/2965) of the syntactical errors we

Authorized licensed use limited to: Peking University. Downloaded on January 05,2025 at 18:12:53 UTC from IEEE Xplore. Restrictions apply.

LIU ET AL.: DEEP LEARNING BASED PROGRAM GENERATION FROM REQUIREMENTS TEXT: ARE WE THERE YET?

int (input())

list (map (int,

ans = 0

for i in range(n):
X, y = map(int, input()
ali] +=1

print (s)

input () .split()))

.split())

~ o b WD

Fig. 3. Undefined-variable in generated program.

encounter during the evaluation. Consequently, to further
improve the state of the art, researchers in the future should
pay more attention to such kind of syntactic errors. For
example, to reduce Undefined-variable errors, we may
request the deep learning models to select from a short list
of variables declared in the generated source code when
variables are expected. In contrast, exiting models always
select tokens from a generic large vocabulary, which often
results in undefined-variables.

The second observation is that only a small part (less than
10 percent) of the generated programs could be executed
without exceptions. Notably, Python is a dynamically typed
programming language, and thus many type errors could not
be identified by static syntactic checking. As a result, pro-
grams that pass static syntactic checking may still fail to run
successfully. To figure out what kind of problems are prevent-
ing such programs from successful execution, we manually
analyze the runtime exceptions that we encounter while exe-
cuting such programs. Notably, we do not execute those who
fail to pass static syntactic checking because they are bound to
fail. The results of our analysis suggest that most of the excep-
tions are ValueError. According to Python documents [75],
ValueError exception is ‘raised when an operation or function
receives an argument that has the right type but an inappro-
priate value, and the situation is not described by a more pre-
cise exception such as IndexError’. An illustrating example is
presented in Fig. 4. The first input statement on Line 1 expects
a string that could be parsed into an integer. However, the
actual input “RYBGRYBGR” fails, and thus a ValueError is
raised. ValueError exceptions account for 72.5%(=578/797) of
the exceptions encountered during the evaluation.

Based on the preceding analysis, we conclude that AST-
based code generation approaches have a great chance to
generate syntactically correct Python programs. However,
such programs are often non-executable because of various
runtime exceptions.

5.3 Q3: Dynamic Validation

To answer question Q3, we run test cases in the dataset on
the generated programs. Results are presented in the last
column of Table 5. From this column, we observe that
none of the generated programs passes any test case in the

Actual input: RYBGRYBGR

1l n = int(input())

2| a = [list(map(int, input().split()))

3] for i in range(n):

4 for j in range(n):

B if a(il[j] == 1 and a[i][]j] == 1l:
6|

6

7

for i in range (n)]

print ('YES"')
break
print ('YES')

Fig. 4. VauleError exception thrown by generated program.

1281

1 n=int(input()) 12ctual input:

2| a = list(map(int, input().split())) 12365

3| ans=0

4| foriinrange(1, n): Expected output:
5 ifa[i]==a[i]: e

] ans +=1 Actual output:

7| print(ans) 3

(a) Generated Program (b) Failed Test Case

Fig. 5. Sample program and failed test case.

dataset. The results may suggest that even if some of the
generated programs are syntactically correct and execut-
able, they fail to fulfill the given requirements. One of the
possible reasons for the failure is that the evaluated
approaches do not really understand the software require-
ments (details are presented in Section 5.6). As a result of
the incomprehension, such approaches cannot generate pro-
grams that fulfill the requirements. An illustrating example
is presented in Fig. 5 where the expected output is a
sequence of ‘+’ and ‘. However, the generated program
outputs a single integer (ans on Line 7).

Notably, the requirements in the dataset have explicitly
specified the format of programs’ input and output, and
thus the failure should not be owned to the flexibility in the
design of program interfaces. For the given example in
Fig. 5, developers could figure out the exact format of the
expected output based on the specification: “Output: In a sin-
gle line print the sequence of n characters ‘+" and *-’, where the ith
character is the sign that is placed in front of number a;”

Based on the preceding analysis, we conclude that the
generated programs have little chance to pass the associated
test cases. Consequently, manual interference (especially
code revision and validation) is indispensable even if such
state-of-the-art automatic code generation approaches are
employed.

5.4 Q4: Usefulness of Generated Programs
To answer question Q4, we record the time that developers
take to finish the tasks, with and without generated pro-
grams, respectively. Results are presented as box plots in
Fig. 6 (for Group A) and Fig. 7 (for Group B). The blue boxes
are associated with cases where developers create source
code from scratch. The red ones are associated with cases
where generated programs are modified to make them work.
From the box plots, we fail to observe significant differ-
ence between the two development models (i.e., coding from
scratch or based on generated programs). For Group A, cod-
ing from scratch took 652 minutes in total whereas revision
based on generated programs took 655.5 minutes. For Group
B, coding from scratch took 714.5 minutes whereas revision
based on generated programs took 707.4 minutes. Overall,
the difference between the two coding models is minor. We
also perform a significance test on the resulting data. Results
suggest that there is no significant difference between the
two coding models: the p-value=0.9696 and F=0.0015 for
Group A and p-value=0.9318 and F=0.0074 for Group B. For
both groups, the p-value is significantly greater than 0.05.
We also compute the effect size (Cohen’s d), and results sug-
gest the effect size (-0.0077 for Group A and 0.0173 for Group
B) is small.

Authorized licensed use limited to: Peking University. Downloaded on January 05,2025 at 18:12:53 UTC from IEEE Xplore. Restrictions apply.

1282 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 4, APRIL 2022

[coding from scratch
[modification on generated code

g
7

10 1 @ D
= B é -
5
=R
— T T T T T T T T T T T T T T T
Taskl Task2 Task3 Task4 Task5 Taské Task? Tasks
Tasks

30 A

N
o
L

[
w
L

a0

Oegg

Time(minutes)

1"ask9‘ T‘asklb
Fig. 6. Usefulness of generated programs (Group A).

We conclude based on the preceding analysis that the
generated source code cannot significantly reduce the cost
(time) of programming, i.e., modification of the generated
programs is not significantly easier than creating programs
from scratch.

5.5 Q5: Where and Why They Succeed

To answer question Q5, we manually analyze the generated
source code. It is highly challenging and time-consuming to
manually compare all of the 1,500 (=300 x 5) generated pro-
grams against 3,000 (=300 x 10) reference implementations.
Consequently, we take the following measures to simplify
the manual checking. First, we randomly select 30 (out of
300) software requirements from the testing dataset, and
confine the manual checking to this subset. Second, for each
generated program on this subset, we only compare it
against one of its reference implementations that has the
greatest similarity (BLEU) with it. We employ diff to visual-
ize the difference (and common ground as well) between a
generated program and its reference implementation. A
typical example is presented in Fig. 2.

Based on the manual checking, we observe that the eval-
uated approaches often succeed or partially succeed in gen-
erating input, output, and for statements. As suggested by
Fig. 2, SNM generates the input statement correctly (‘n,m =
map(int, input().split())’), and places it in the right place, i.e.,
the very beginning of the program. It also succeeds in gener-
ating oufput statement ‘print(val)’ and for statement (Line 3
on the left part of Fig. 2) except for the variable names.
Table 10 presents how often input, output, and for statements

[coding from scratch
304 modification on generated code @ @
25 A
w o=
2
2 20- ?é
£
£ o -
10 4 Q
D= S = - ==
& -
5 -

— T T T T T T T T T T T T T T T T T T T
Taskl Task2 Task3 Task4 TaskS Taské Task7 Task8 Task9 Task10

Tasks

Fi

g. 7. Usefulness of generated programs (Group B).

are generated successfully. The first column of Table 10
presents different approaches. The second column presents
how often the evaluated approaches succeed or partially
succeed (inside parentheses) in generating input statements.
If the generated input statement is identical to that in the ref-
erence implementation, we say the generation is correct.
Otherwise, we manually assess whether the generation is
partially correct (with slight difference) or incorrect. The
third and the fourth columns present how often the evalu-
ated approaches succeed or partially succeed in generating
for and output statements, respectively. From this table, we
observe that all of the evaluated approaches are good at
generating such statements. On average, around one fifth of
the input and for statements are generated correctly, and
more than half of them are generated partially successfully.
Although output statements are more difficult to generate
correctly (because of variables involved in the statements),
in most cases (84 percent on average) the evaluated
approaches know that an output statement (i.e., ‘print(*)")
should be generated and placed at the end of the generated
programs.

One of the possible reasons for the success in generating
input, output, and for statements is that such statements are
highly popular in the training data. The popularity of
related statements is presented in Table 11. The first column
presents the popular statement (or part of a statement). The
second column presents their popularity in training pro-
grams, i.e.,, how many percentages of the programs in the
training dataset contain such statements. The third column
presents their popularity in testing programs. Columns 4-8

TABLE 10
Well Generated Statements

Approaches Input Statement correct For Statement correct Output Statement correct
(partially correct) (partially correct) (partially correct)
Seq2Seq 17% (83%) 24% (60%) 3% (90%)
SNM 17% (83%) 26% (67%) 7% (83%)
Tree2Tree 13% (87 %) 11% (54%) 7% (83%)
TRANX 30% (70%) 22% (59%) 3% (83%)
Coarse-to-Fine 27% (70%) 26% (70%) 7% (83%)
Average 21% (79%) 22% (62%) 5% (84%)

Authorized licensed use limited to: Peking University. Downloaded on January 05,2025 at 18:12:53 UTC from IEEE Xplore. Restrictions apply.

LIU ET AL.: DEEP LEARNING BASED PROGRAM GENERATION FROM REQUIREMENTS TEXT: ARE WE THERE YET?

1283

TABLE 11
Popularity of Well Generated Statements

Statements In Training In Testing In Generated Programs
Programs Programs Seq2Seq SNM Tree2Tree Tranx Coarse-to-Fine
input () 97% 97% 99% 100% 99% 100% 98%
print (*) 99% 99% 86% 86% 95% 89% 91%
for * in * 76% 75% 84% 83% 67% 89% 92%
for i in range 50% 47% 77% 79% 57% 85% 85%
TABLE 12
Change of BLEU When Normal Input Is Replaced with Random Noise
Seq2Seq SNM Tree2Tree TRANX Coarse-to-Fine Average
Normal Input 0.138 0.188 0.150 0.184 0.176 0.167
Random Noise 0.152 0.173 0.147 0.178 0.169 0.164
TABLE 13
Popularity of Well Generated Statements (Random Noise)
Statements Seq2Seq SNM Tree2Tree Tranx Coarse-to-Fine
input () 99% 100% 99% 99% 99%
print (*) 97% 90% 95% 90% 97%
for *in * 82% 80% 76% 85% 96%
for i in range 78% 76% 64% 82% 88%

present their popularity in programs generated by different
approaches. From the table, we observe that the output state-
ment “print (*)” (where * is a wildcard character)
appears in almost all of the training and testing programs,
and thus the deep learning-based approaches learn to gen-
erate this statement frequently. For example, SNM and
TRANX include this statement in each of their generated
programs. The same is true for input statement ” input () ”
and for statement ” for * in *~

Based on the preceding analysis, we conclude that the
state-of-the-art approaches have the ability to generate highly
popular statements, like input, output, and for statements.

5.6 Q6: Little Learned From Requirements

To investigate to what extent the evaluated approaches
understand software requirements (input of the approaches),
we replace the requirements in the testing data with random
noise, and repeat the evaluation. The random noise is created
as follows. First, we collect all unique tokens from require-
ments in the training data, noted as Sy, Second, for each
requirement r; in the testing data, we generate an empty noise
noise(r;). Third, we randomly select a token from Sy, and
append it to noise(r;). This step is repeated until noise(r;) and
r; are equally sized.

Evaluation results are presented in Table 12 where the
second and third rows present the BLEU of the evaluated
approaches with normal input and noise input, respectively.
From this table, we observe that replacing normal input with
random noise results in small changes in BLEU of the evalu-
ated approaches. The average BLEU (0.164) with random
noise is comparable to that (0.167) with normal input. We
also notice that the random noise even increases the perfor-
mance of Seq2Seq, improving its BLEU from 0.138 to 0.152.

We also investigate how often the most popular state-
ments (e.g., input, print, and for statements) are generated by
the evaluated approaches when normal input is replaced
with random noise. Results are presented in Table 13. From
this table, we observe that such popular statements are gen-
erated frequently as well. By comparing Table 13 against
Table 11, we conclude that replacing requirements text with
random noise does not prevent the evaluated approaches
from generating the most popular statements.

Based on the preceding analysis, we conclude that the
evaluated approaches learn little from input requirements.

5.7 Q7: Simple Alternative Approach

As suggested by the preceding analysis in Section 5.5, the
evaluated approaches work well in generating popular
statements. Consequently, an intuitive and simple way to
simulate the evaluated approaches is to generate popular
statements only. We call it popularity-based approach.

The approach works as follows. First, it computes the
average length of the programs in training data. In our case,
the average length is 13 lines of source code, noted as n = 13.
Second, for each unique line of source code in the training
data, the approach computes its popularity, i.e., how often it
appears in the training programs. Third, it sorts the unique
lines according to their popularity, and inserts the top » lines
into a new program p. Finally, the approach always returns
this program (p) as the generated program regardless of the
input (requirements). Notably, this approach completely
ignores the input (requirements), and thus it is of little value
in practice. However, it may intuitively reveal the state of the
art by comparing it against the state-of-the-art approaches.

We apply this simple popularity-based approach to our
dataset. Evaluation results suggest it achieves a BLEU of

Authorized licensed use limited to: Peking University. Downloaded on January 05,2025 at 18:12:53 UTC from IEEE Xplore. Restrictions apply.

1284 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 4, APRIL 2022
TABLE 14
Evaluation Results on Nonredundant Dataset
Approaches BLEU on NIST WER Subtree Syntactically Executable Functionally
New Dataset Correct Programs Programs Correct Programs
Seq2Seq 0.108 0.667 5.886 0.060 19.7% 4.3% 0%
SNM 0.151 0.738 0.873 0.133 27.3% 10.0% 0%
Tree2Tree 0.129 0.642 0.968 0.133 59.0% 0.3% 0%
TRANX 0.149 0.836 1.292 0.113 41.0% 9.3% 0%
CoasetoFine 0.155 1.006 1.602 0.029 3.0% 1.0% 0%
Average 0.138 0.778 2.124 0.093 30.0% 5.0% 0%
TABLE 15
Effect of Unifying ldentifiers
Applications Unifying Identifiers Without Unifying Identifiers (Default Setting)
BLEU Syntactically = Executable Functionally = BLEU Syntactically =~ Executable Functionally
Seq2Seq 0.135 47.3% 7.7% 0% 0.138 44.7% 6.0% 0%
SNM 0.181 80.0% 16.3% 0% 0.188 93.0% 16.7% 0%
Tree2Tree 0.177 72.3% 12.0% 0% 0.150 83.7% 14.3% 0%
TRANX 0.187 84.3% 4.0% 0% 0.184 81.7% 9.0% 0%
Coarse-to-Fine 0.151 3.3% 0.1% 0% 0.176 10.0% 2.7% 0%
Average 0.166 57.4% 8.0% 0% 0.167 62.6% 9.7% 0%

0.211, significantly higher than any of the evaluated deep
learning-based approaches (as shown in Table 5). The com-
parison intuitively reveals the state of the art: the advanced
deep learning-based code generation approaches cannot
even outperform this intuitive and impractical approach.

Based on the preceding analysis, we conclude that it is
likely for simple and intuitive approaches to outperform the
state-of-the-art deep learning-based approaches concerning
the common performance metrics BLEU.

5.8 Q8: Removing Redundant Implementations
Does Not Help

Evaluation results on the nonredundant dataset are pre-

sented in Table 14. By comparing this table against Table 5

(performance on the original dataset where multiple imple-

mentations for the same tasks are exploited), we make the

following observations:

e First, removing redundant implementations does not
help. For example, all of the evaluated approaches
result in lower BLEU on the nonredundant dataset
than that on the original dataset. It reduces from
0.138 to 0.108 (Seq2Seq), from 0.188 to 0.151 (SNM),
from 0.15 to 0.129 (Tree2Tree), from 0.176 to 0.149
(TRANX), and from 0.167 to 0.155 (CoasetoFine).
The same is true for other performance metrics.

e Second, no functionally correct programs could be
generated even if the evaluated approaches are fed
with the nonredundant dataset.

Based on the preceding analysis, we conclude that remov-

ing redundant implementations from the dataset may not
improve the performance of code generation.

5.9 Q9: Impact of Unifying Identifiers
To investigate the impact of identifier unification, we unify
identifiers in requirements and source code (in the same way

as TRANX unifies identifiers [31]), and repeat the first empir-
ical study as introduced in Section 4.3. First, we replace con-
stant strings (like “URL is required”) that appear in both
requirements and associated source code with unified tokens
“str;”. Second, we replace variables that appear in both
requirements and associated source code with unified tokens
“var;”. The variables are not further divided according to
their types because Python is not a statically typed program-
ming language (like Java). Notably, the same identifier unifi-
cation is conducted on all of the data. Evaluation results of
the identifier unification are presented in Table 15. To facili-
tate the comparison, we also present the performance of the
default setting (i.e., without unifying identifiers). From
Table 15, we make the following observations:

e First, unifying identifiers has minor and diverse impact
on the performance of the evaluated approaches. For
example, it improves the BLEU of TRANX and Tree2-
Tree slightly from 0.184 to 0.187 and from 0.15 to 0.177,
respectively. In the same time, however, it also
decreases BLEU of Seq2seq (from 0.138 to 0.135), SNM
(from 0.188 to 0.181), and Coarse-to-Fine (from 0.176 to
0.151). Overall, unifying identifiers slightly reduces the
average BLEU of the evaluated approaches from 0.167
to 0.166. The same is true for other performance metrics,
e.g., syntactically correct programs.

e Second, no functionally correct programs could be
generated regardless of the application of unifying
identifiers.

6 DISCUSSIONS

6.1 Potential Reasons for Reduced Performance
Evaluation results in Section 5 suggest that switching from
existing datasets to ours significantly reduces the perfor-
mance of existing approaches. Potential reasons are dis-
cussed as follows.

Authorized licensed use limited to: Peking University. Downloaded on January 05,2025 at 18:12:53 UTC from IEEE Xplore. Restrictions apply.

LIU ET AL.: DEEP LEARNING BASED PROGRAM GENERATION FROM REQUIREMENTS TEXT: ARE WE THERE YET?

First, some special characters in existing datasets facili-
tate learning-based code generation. For example, the
requirements (pseudo-code) in Django are quite similar to
their implementations. On average, 49.4 percent of the
tokens in a program (source code) could be copied from the
requirements associated with the program. As a result,
learning-based approaches may achieve high performance
by copying tokens from requirements to generated pro-
grams. In HS, different programs are highly similar to each
other, which also significantly facilitates code generation.
Because of the similarity, learning-based approaches can
learn the common structures (also known as templates),
and frequently generate source code successfully by ‘filling
learned code templates from training data with arguments copied
from input’ [22].

Second, the requirements in our dataset are much more
complex than the existing ones. As discussed in Section 5.6,
a great challenge in code generation is natural language
understanding (NLU), i.e., to understand requirements. The
longer the requirements are, the harder NLU is. Compared
to existing datasets, our dataset is composed of much longer
and more complex requirements. The average length of
such requirements is 185 tokens compared to 14 and 34 in
Django and HS, respectively.

Third, the diversity of our dataset has a significant nega-
tive impact on the evaluated approaches. Such approaches
have been trained in a specific domain with similar require-
ments. However, our dataset has very diverse requirements
with no common tasks. As a result, except for the generic
programming skills (especially algorithm related program-
ming skills), little could be learned about the implementa-
tion of specific tasks. However, learning the generic
programming skills (i.e., the ability to turn textual require-
ments into source code as a human developer does) is
highly challenging. As a result, the performance of program
generation is significantly reduced.

Fourth, the size of our dataset may have prevented the
evaluated approaches from reaching their maximal poten-
tial. In total, the dataset is composed of 16,673 requirements-
code pairs, making it comparable to other data sets that have
been employed by the authors of the evaluated approaches.
For example, SNM was originally evaluated on JBOS (with
640 items), GEO (with 880 items), ATIS (with 5,373 items),
and IFTTT (with 86,960 items), independently. Our dataset is
significantly bigger than such datasets except for IFTTT.
However, our dataset contains 2,740 unique requirements
only, which makes it smaller than ATIS and IFTTT concern-
ing the number of unique requirements. Besides that, the
increased complexity of the requirements and source code,
together with the limited number of unique requirements,
could prevent the evaluated approaches from reaching their
maximal potential.

Fifth, our tuning of the hyper parameters for the evalu-
ated approaches could be less effective than the tuning con-
ducted by the original authors of the evaluated approaches.
Such approaches have been fine-tuned on given datasets
that were leveraged for evaluation by their authors, which
often results in high performance on the given dataset. The
original tuning is effective because the experts who tuned
the parameters were familiar with the approaches. In con-
trast, we tuned the parameters without deep understanding

1285

of the evaluated approaches, and thus the tuning could be
more time-consuming and less effective. This, in turn, pre-
vents the evaluated approaches from reaching their maxi-
mal potential.

6.2 Experiment on More Datasets

There is a clear need for an empirical study on various data-
sets with the proposed approach and evaluate them by com-
paring it with other approaches. The experiment is conducted
on a single dataset that we create in Section 3, which may limit
its validity. As introduced in Section 2.2, existing datasets
have significant limitations, and thus assessing the state of the
art on such datasets may result in severe threats to validity.
To this end, we create a new dataset. With this dataset, we
assess the state of the art in code generation. To reduce threats
to external validity, however, we should conduct similar
experiments on other qualified datasets in the future when
such datasets are available. Notably, we do not compare the
proposed approach (popularity-based code generation)
against other approaches on existing datasets. For example,
each of the reference programs in Django is composed of a sin-
gle unique statement, which makes it impractical to select the
most popular statements in the dataset. As a result, the popu-
larity-based approach cannot work on Django.

Other threats to validity exist as well, e.g., the size of the
involved dataset and the representativeness of the evaluated
approaches. The size of the involved dataset may influence
the performance of the evaluated approaches. It is likely that
increasing the size of the dataset could improve the perfor-
mance. However, we have not yet investigated its exact influ-
ence. Selecting different code generation approaches for the
evaluation may result in different conclusions because their
performance on the same dataset (i.e., our new dataset) could
vary significantly. To reduce the threats to validity, we select
multiple state-of-the-art approaches for the evaluation.

6.3 Limited Diversity of the New Dataset

As specified in Section 3, the new dataset is created based
on programming contest platforms, which may limit its
diversity. Although the programming contest platforms do
not post any explicit limitations on the domain of contests,
most of the contests concern data structures, sorting algo-
rithms, mathematic computation, text processing, or data-
base management. They are rarely related to any specific
application domains, e.g., financial systems, office software,
or image processing. As a result, the diversity of the result-
ing dataset is limited. Approaches trained on such dataset
may fail to generate applications whose creation strongly
depends on domain knowledge.

Besides the limited diversity, the source code within the
dataset could be different from applications in the industry
in the following ways. First, most of the code in the new data-
set is coded by novice programmers and the skillset levels of
these developers are low when compared with industry
standards. Second, most of the code written by programmers
participating in such contests tend to algorithm driven and
end up being implementations of some data structures.
Third, real-world systems have a lot of inter-dependencies
among the task whereas a majority of tasks in programming
contests tend to be orthogonal in nature. Finally, there is lot

Authorized licensed use limited to: Peking University. Downloaded on January 05,2025 at 18:12:53 UTC from IEEE Xplore. Restrictions apply.

1286

of importance given to certain qualities in programming con-
tests which is not necessarily true in real-world systems.

One future work to strengthen the dataset is to exploit
additional data sources. Extracting additional data will
increase both the size and diversity of the resulting dataset,
and thus may help to facilitate the training of deep learn-
ing-based code generation models. It is also interesting to
include non-English software requirements, and to investi-
gate multiple-language code generation.

Although it is not novel to create dataset by crawling web
pages, creating and publishing the dataset is valuable. On
one side, the resulting dataset has significant advantages
compared to existing ones. On the other side, publishing it
releases other researchers from grueling and time-consum-
ing dataset creation.

6.4 Performance Metrics for the Empirical Study
Besides BLEU, we also employ the number of compilation
errors, the number of compilation warnings, and the number
of failed /passed test cases to assess the quality of generated
programs as presented in Table 5. However, such metrics are
not suitable for existing datasets (e.g., Django and HS)
because the reference programs (code fragments) within
such datasets are incomplete and incompilable. Conse-
quently, it is unfair/unpractical to require models trained on
such datasets to generate complete and compilable/runnable
programs. However, programs in our new dataset are com-
plete and syntactically correct, and thus we compute such
performance metrics for the evaluation on the new dataset.

6.5 Threats to Validity

Besides the threats (limitations) discussed in the preceding
sections, the evaluation (especially the case study to evaluate
the usefulness of generated programs) is subjected to the fol-
lowing threats to validity. A threat to external validity is that
only ten programming tasks and twenty participants were
involved in the evaluation. Conclusions drawn on such lim-
ited number of subjects may not be generalizable. We failed
to increase the number of programming tasks or participants
because it is time-consuming for participants to finish the
selected programming tasks, and it is challenging for us to
recruit a large number of qualified participants. A threat to
internal validity is that the observations (coding speed) could
be significantly influenced by the characters (e.g., knowledge
in Python and programming skills) besides the investigated
factor (i.e.,, with or without the generated programs). To
reduce the threat, we recruited thirty participants, excluded
the top and bottom ones (concerning their performance) with
a pretest, and divided the remaining participants into two
independent groups according to their performance in the
pretest. As a result, the participants within the same group
had similar performance in the pretest.

7 CONCLUSION AND FUTURE WORK

Deep learning-based code generation is potentially promis-
ing, and a few approaches have been proposed. Although
existing evaluations suggest that such approaches are
highly accurate, they are evaluated on small datasets where
‘requirements’ are quite different from real-world require-
ments in the industry. To assess the state of the art, in this

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 4, APRIL 2022

paper, we build a large scale dataset. Compared to existing
ones, it is larger and more diverse. Besides the dataset, we
also build an assisting tool to measure the quality of gener-
ated programs. We not only compute the widely used plain
text-based metrics (BLEU), but also employ syntax sensitive
static checking as well as test based dynamic cross-valida-
tion. Based on the resulting dataset and assisting tool, we
reassess the state of the art in natural language-based pro-
gram generation. Evaluation results suggest that the state-
of-the-art approaches successfully learn to generate popular
statements. However, the generated programs are often sig-
nificantly different from their references. Besides that, they
often contain syntactic and semantical errors, and none of
them can pass even a single test case. Further analysis sug-
gests that they learn little from the input (requirements).
Consequently, to further improve the state of the art,
researchers should pay more attention to the encoders of
the neural networks that are in charge of requirements’
interpretation. The resulting dataset, the assisting tool, and
evaluated approaches (all of them are publicly available at
https:/ /github.com/ds4an/CoDas4CG) could serve as a
basis for future research in this direction.

One future work is to design more effective metrics to
assess quality of code generation. It is well-known that
BLEU alone is insufficient for assessing the quality of code
generation [69] because source code has little tolerance for
poor syntax or semantics. To this end, in this paper we pro-
pose additional metrics to assess the syntax and semantics
of generated programs, ie., the number of compilation
errors, number of compilation warnings, and number of
failed/passed test cases. However, as suggested by the
empirical study in Section 5, most of the programs gener-
ated by the state-of-the-art approaches are not executable,
which significantly prevents the proposed execution-based
metrics from reaching their maximal potential. Conse-
quently, it remains an open question to design effective met-
rics in the future to accurately and quantitatively assess the
quality of programs automatically generated by the state-of-
the-art approaches.

In the future, it is worthwhile to explore larger (not nec-
essarily more complex) datasets to investigate whether the
performance of deep learning-based program generation
could be improved if there are more sample program imple-
mentations available for each task.

It is interesting to change the evaluation setting and
repeat the evaluation in the future. The evaluation setting
is that some task requirement-implementation pairs are
used to train the deep learning models, and use other dif-
ferent task requirements to test if the resulting models
can generate useful code. Such a setting is quite realistic
but highly challenging. However, if we build a smaller
dataset containing similar tasks only, repeating the same
evaluation could result in significantly improved perfor-
mance of the evaluated approaches because in this case
the testing tasks are similar to those leveraged for model
training.

Finally, further investigation into the weakness of the
evaluated approaches could be valuable. In the evaluation,
we analyze where and why the evaluated approaches work.
However, we have no yet investigated where and why such
approaches fail.

Authorized licensed use limited to: Peking University. Downloaded on January 05,2025 at 18:12:53 UTC from IEEE Xplore. Restrictions apply.

https://github.com/ds4an/CoDas4CG

LIU ET AL.: DEEP LEARNING BASED PROGRAM GENERATION FROM REQUIREMENTS TEXT: ARE WE THERE YET?

ACKNOWLEDGMENTS

The authors would like to thank the associate editor and the
anonymous reviewers for their insightful comments and
constructive suggestions. This work was sponsored in part
by the National Key Research and Development Program of
China (2017YFB1001803), the National Natural Science
Foundation of China (61772071, 61690205), and the National
Science Foundation (CCF-1350487).

REFERENCES

[1]
[2]

[3]
[4]

[5]

[6]
[71
[8]
9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[171

[18]

[19]

[20]

L. Sommerville, Software Engineering. Boston, MA, USA: Addison-
Wesley, 1992.

M. W. Whalen, “An approach to automatic code generation for
safety-critical systems,” in Proc. 14th IEEE Int. Conf. Autom. Softw.
Eng., 1999, pp. 315-318.

M. W. Whalen, “High-integrity code generation for state-based
formalisms,” in Proc. Int. Conf. Softw. Eng., 2000, pp. 725-727.

D. Harel et al., “STATEMATE: A working environment for the
development of complex reactive systems,” IEEE Trans. Softw.
Eng., vol. 16, no. 4, pp. 403-414, Apr. 1990.

H. Mei and L. Zhang, “Can big data bring a breakthrough for
software automation?” Sci. China Inf. Sci., vol. 61, no. 5, 2018,
Art. no. 056101.

G. O'Regan, Concise Guide to Formal Methods: Theory, Fundamentals
and Industry Applications. Berlin, Germany: Springer, 2017.

J. M. Wing, “A specifier’s introduction to formal methods,” Com-
puter, vol. 23, no. 9, pp. 8-22, Sep. 1990.

P. Linz, An Introduction to Formal Languages and Automata. Burling-
ton, MA, USA: Jones and Bartlett Learning, 2011.

R. Soley and the OMG Staff Strategy Group, “Model driven
architecture,” Object Management Group, Needham, MA, Rep. no.
omg/00-11-05, Nov. 2000.

F. A. Kraemer, “Engineering Android applications based on UML
activities,” in Proc. 14th Int. Conf. Model Driven Eng. Lang. Syst.,
2011, pp. 183-197.

G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modelling Lan-
guage User Guide. Boston, MA, USA: Addison-Wesley Professional,
2005.

G. Sunyé, A. L. Guennec, and].-M. Jézéquel, “Using UML action
semantics for model execution and transformation,” Inf. Syst., vol.
27, no. 6, pp. 445-457, 2002. [Online]. Available: http://www.
sciencedirect.com/science/article/ pii/S0306437902000145

D. A. Dahl et al., “Expanding the scope of the ATIS task: The ATIS-3
corpus,” in Proc. Workshop held at Plainsboro Hum. Lang. Technol.,
1994, pp. 43-48. [Online]. Available: http:/ /aclweb.org/anthology/
H/H94/H94-1010.pdf

W. Ling et al., “Latent predictor networks for code generation,” in
Proc. 54th Annu. Meeting Assoc. Comput. Linguistics, 2016, pp. 599—
609. [Online]. Available: http://aclweb.org/anthology/P/P16/
P16-1057.pdf

L. R. Tang and R.]. Mooney, “Using multiple clause constructors
in inductive logic programming for semantic parsing,” in Proc.
12th Eur. Conf. Mach. Learn., 2001, pp. 466—477. [Online]. Available:
https://doi.org/10.1007 /3-540-44795-4_40

P. Yin, B. Deng, E. Chen, B. Vasilescu, and G. Neubig, “Learning to
mine aligned code and natural language pairs from stack overflow,”
in Proc. 15th Int. Conf. Mining Softw. Repositories, 2018, pp. 476-486.
[Online]. Available: http://doi.acm.org/10.1145/3196398.3196408
Y. Deng, A. Kanervisto, J. Ling, and A. M. Rush, “Image-to-
markup generation with coarse-to-fine attention,” in Proc. 34th Int.
Conf. Mach. Learn., 2017, pp. 980-989. [Online]. Available: http://
proceedings.mlr.press/v70/deng17a.html

C. Chen, T. Su, G. Meng, Z. Xing, and Y. Liu, “From UI design
image to GUI skeleton: A neural machine translator to bootstrap
mobile GUI implementation,” in Proc. 40th Int. Conf. Softw. Eng.,
2018, pp. 665-676. [Online]. Available: http://doi.acm.org/
10.1145/3180155.3180240

S. Gulwani, “Automating string processing in spreadsheets using
input-output examples,” in Proc. 38th ACM SIGPLAN-SIGACT
Symp. Princ. Program. Lang., 2011, pp. 317-330. [Online]. Available:
http:/ /doi.acm.org/10.1145/1926385.1926423

C. Shu and H. Zhang, “Neural programming by example,” in
Proc. 31st AAAI Conf. Artif. Intell., 2017, pp. 1539-1545.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

1287

J. Dick, E. Hull, and K. Jackson, Requirements Engineering. 4th ed.,
Berlin, Germany: Springer, Aug. 23, 2017.

P. Yin and G. Neubig, “A syntactic neural model for general-pur-
pose code generation,” in Proc. 55th Annu. Meeting Assoc. Comput.
Linguistics, 2017, pp. 440-450. [Online]. Available: https://doi.
org/10.18653/v1/P17-1041

K. Papineni, S. Roukos, T. Ward, and W. Zhu, “BLEU: A method for
automatic evaluation of machine translation,” in Proc. 40th Annu.
Meeting Assoc. Comput. Linguistics, 2002, pp. 311-318. [Online]. Avail-
able: http:/ /www.aclweb.org/anthology/P02-1040.pdf

Y. Wu et al., “Google’s neural machine translation system: Bridg-
ing the gap between human and machine translation,” CoRR,
2016. [Online]. Available: http://arxiv.org/abs/1609.08144

Y. Oda et al., “Learning to generate pseudo-code from source code
using statistical machine translation (T),” in Proc. 30th IEEEJ/ACM
Int. Conf. Autom. Softw. Eng., 2015, pp. 574-584. [Online]. Avail-
able: https://doi.org/10.1109/ASE.2015.36

P. Liang, M. L. Jordan, and D. Klein, “Learning dependency-based
compositional semantics,” in Proc. 49th Annu. Meeting Assoc. Com-
put. Linguistics, 2011, pp. 590-599. [Online]. Available: http://
www.aclweb.org/anthology/P11-1060

A.Wang, T. Kwiatkowski, and L. S. Zettlemoyer, “Morpho-syntactic
lexical generalization for CCG semantic parsing,” in Proc. Conf.
Empir. Methods Natural Lang. Process., 2014, pp. 1284-1295. [Online].
Available: http:/ /aclweb.org/anthology/D/D14/D14-1135.pdf

L. Dong and M. Lapata, “Language to logical form with neural
attention,” in Proc. 54th Annu. Meeting Assoc. Comput. Linguistics,
2016, pp. 33-43. [Online]. Available: http:/ /aclweb.org/anthology /
P/P16/P16-1004.pdf

M. Rabinovich, M. Stern, and D. Klein, “Abstract syntax networks
for code generation and semantic parsing,” in Proc. 55th Annu.
Meeting Assoc. Comput. Linguistics, 2017, pp. 1139-1149. [Online].
Available: https://doi.org/10.18653/v1/P17-1105

A. Stehnii, “Generation of code from text description with syntac-
tic parsing and Tree2Tree model,” Master’s thesis, Dept. Comput.
Sci., Ukrainian Catholic University, Lviv, Ukraine, 2018.

P. Yin and G. Neubig, “TRANX: A transition-based neural abstract
syntax parser for semantic parsing and code generation,” in Proc.
Conf. Empir. Methods Natural Lang. Process., 2018, pp. 7-12. [Online].
Available: https:/ /arxiv.org/abs/1810.02720

L. Dong and M. Lapata, “Coarse-to-fine decoding for neural
semantic parsing,” in Proc. 56th Annu. Meeting Assoc. Comput. Lin-
guistics, 2018, pp. 731-742. [Online]. Available: http://aclweb.
org/anthology/P18-1068

S. A.Hayati, R. Olivier, P. Avvaru, P. Yin, A. Tomasic, and G. Neubig,
“Retrieval-based neural code generation,” in Proc. Conf. Empir. Meth-
ods Natural Lang. Process., 2018, pp. 925-930. [Online]. Available:
https:/ /www.aclweb.org/anthology/D18-1111/

Z.Sun, Q. Zhu, L. Mou, Y. Xiong, G. Li, and L. Zhang, “A gram-
mar-based structural CNN decoder for code generation,” in Proc.
AAAI Conf. Artif. Intell., 2019, vol. 33, pp. 7055-7062.

T. Gvero and V. Kuncak, “Synthesizing Java expressions from
free-form queries,” in Proc. ACM SIGPLAN Int. Conf. Object-
Oriented Program. Syst. Lang. Appl., 2015, pp. 416-432. [Online].
Available: http://doi.acm.org/10.1145/2814270.2814295

M. Raghothaman, Y. Wei, and Y. Hamadi, “SWIM: Synthesizing
what i mean - code search and idiomatic snippet synthesis,” in
Proc. IEEEJACM 38th Int. Conf. Softw. Eng., 2016, pp. 357-367.

A.T. Nguyen, P. C. Rigby, T. Nguyen, D. Palani, M. Karanfil, and
T. N. Nguyen, “Statistical translation of english texts to API code
templates,” in Proc. IEEE Int. Conf. Softw. Maintenance Evol., 2018,
pp. 194-205.

S.Yan, H. Yu, Y. Chen, B. Shen, and L. Jiang, “Are the code snippets
what we are searching for? A benchmark and an empirical study on
code search with natural-language queries,” in Proc. IEEE 27th Int.
Conf. Softw. Anal. Evol. Reengineering, 2020, pp. 344-354.

J. M. Zelle and R. J. Mooney, “Learning to parse database queries
using inductive logic programming,” in Proc. 13th Nat. Conf. Artif.
Intell., 1996, pp. 1050-1055. [Online]. Available: http:/ /www.aaai.
org/Library/ AAAI/1996/aaai%6-156.php

C. Quirk, R. J. Mooney, and M. Galley, “Language to code: Learning
semantic parsers for if-this-then-that recipes,” in Proc. 53rd Annu.
Meeting Assoc. Comput. Linguistics, 2015, pp. 878-888. [Online]. Avail-
able: http:/ /aclweb.org/anthology /P/P15/P15-1085.pdf

Magic the gathering, 2016. [Online]. Available: http://github.
com/magefree/mage/

Authorized licensed use limited to: Peking University. Downloaded on January 05,2025 at 18:12:53 UTC from IEEE Xplore. Restrictions apply.

http://www.sciencedirect.com/science/article/pii/S0306437902000145
http://www.sciencedirect.com/science/article/pii/S0306437902000145
http://aclweb.org/anthology/H/H94/H94--1010.pdf
http://aclweb.org/anthology/H/H94/H94--1010.pdf
http://aclweb.org/anthology/P/P16/P16-1057.pdf
http://aclweb.org/anthology/P/P16/P16-1057.pdf
https://doi.org/10.1007/3-540-44795-4_40
http://doi.acm.org/10.1145/3196398.3196408
http://proceedings.mlr.press/v70/deng17a.html
http://proceedings.mlr.press/v70/deng17a.html
http://doi.acm.org/10.1145/3180155.3180240
http://doi.acm.org/10.1145/3180155.3180240
http://doi.acm.org/10.1145/1926385.1926423
https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.18653/v1/P17-1041
http://www.aclweb.org/anthology/P02-1040.pdf
http://arxiv.org/abs/1609.08144
https://doi.org/10.1109/ASE.2015.36
http://www.aclweb.org/anthology/P11-1060
http://www.aclweb.org/anthology/P11-1060
http://aclweb.org/anthology/D/D14/D14-1135.pdf
http://aclweb.org/anthology/P/P16/P16-1004.pdf
http://aclweb.org/anthology/P/P16/P16-1004.pdf
https://doi.org/10.18653/v1/P17-1105
https://arxiv.org/abs/1810.02720
http://aclweb.org/anthology/P18-1068
http://aclweb.org/anthology/P18-1068
https://www.aclweb.org/anthology/D18-1111/
http://doi.acm.org/10.1145/2814270.2814295
http://www.aaai.org/Library/AAAI/1996/aaai96-156.php
http://www.aaai.org/Library/AAAI/1996/aaai96-156.php
http://aclweb.org/anthology/P/P15/P15-1085.pdf
http://github.com/magefree/mage/
http://github.com/magefree/mage/

1288

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[571

[58]

[59]

[60]

[61]

[62]

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 4, APRIL 2022

Hearthstone, 2016. [Online]. Available:
danielyule/hearthbreaker/

Z. Yao, D. S. Weld, W. Chen, and H. Sun, “StaQC: A systemati-
cally mined question-code dataset from stack overflow,” in Proc.
World Wide Web Conf. World Wide Web, 2018, pp. 1693-1703.
[Online]. Available: http://doi.acm.org/10.1145/3178876.3186081
Stack OverFlow, 2019. [Online]. Available: https://stackoverflow.
com/

V. Raychev, M. Vechev, and E. Yahav, “Code completion with sta-
tistical language models,” in Proc. 35th ACM SIGPLAN Conf. Pro-
gram. Lang. Des. Implementation, 2014, pp. 419-428. [Online].
Available: http://doi.acm.org/10.1145/2594291.2594321

J.Li, Y. Wang, M. R. Lyu, and 1. King, “Code completion with neu-
ral attention and pointer networks,” in Proc. 27th Int. Joint Conf.
Artif. Intell., 2018, pp. 4159-4165. [Online]. Available: https://doi.
org/10.24963/ijcai.2018/578

A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the
naturalness of software,” in Proc. 34th Int. Conf. Softw. Eng., 2012,
pp- 837-847. [Online]. Available: http://dl.acm.org/citation.cfm?
id=2337223.2337322

M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Suggesting accu-
rate method and class names,” in Proc. 10th Joint Meeting Found.
Softw. Eng., 2015, pp. 38-49. [Online]. Available: http://doi.acm.
org/10.1145/2786805.2786849

L. Jiang, H. Liu, and H. Jiang, “Machine learning based automated
method name recommendation: How far are we,” in Proc. 34th
IEEE/ACM Int. Conf. Autom. Softw. Eng., 2019, pp. 602-614.

H. Liu, Q. Liu, C.-A. Staicu, M. Pradel, and Y. Luo, “Nomen est Omen:
Exploring and exploiting similarities between argument and parame-
ter names,” in Proc. 38th Int. Conf. Softw. Eng., 2016, pp. 1063-1073.
[Online]. Available: http://doi.acm.org/10.1145/2884781.2884841

X. Chen, C. Liu, and D. Song, “Towards synthesizing complex
programs from input-output examples,” in Proc. Int. Conf. Learn.
Representations, 2018. [Online]. Available: https://openreview.
net/forum?id=Skp1ESxRZ

R. Alur, R. Singh, D. Fisman, and A. Solar-Lezama, “Search-based
program synthesis,” Commun. ACM, vol. 61, no. 12, pp. 84-93,
Nov. 2018. [Online]. Available: https://doi.org/10.1145/3208071
J. Devlin, J. Uesato, S. Bhupatiraju, R. Singh, A. Mohamed, and P.
Kohli, “RobustFill: Neural program learning under noisy I/0,” in
Proc. 34th Int. Conf. Mach. Learn., 2017, pp. 990-998.

E. Parisotto, A. Mohamed, R. Singh, L. Li, D. Zhou, and P. Kohli,
“Neuro-symbolic program synthesis,” in Proc. 5th Int. Conf. Learn.
Representations, 2017. [Online]. Available: https:/ /www.microsoft.
com/en-us/research/publication/neuro-symbolic-pro gram-
synthesis-2/

Y. Feng, R. Martins, J. Van Geffen, I. Dillig, and S. Chaudhuri,
“Component-based synthesis of table consolidation and transfor-
mation tasks from examples,” in Proc. 38th ACM SIGPLAN Conf.
Program. Lang. Des. Implementation, 2017, pp. 422-436. [Online].
Available: https://doi.org/10.1145/3062341.3062351

Y. Feng, R. Martins, O. Bastani, and I. Dillig, “Program synthesis
using conflict-driven learning,” in Proc. 39th ACM SIGPLAN Conf.
Program. Lang. Des. Implementation, 2018, pp. 420-435. [Online].
Available: https://doi.org/10.1145/3192366.3192382

W. Lee, K. Heo, R. Alur, and M. Naik, “Accelerating search-based
program synthesis using learned probabilistic models,” in Proc.
39th ACM SIGPLAN Conf. Program. Lang. Des. Implementation,
2018, pp. 436-449. [Online]. Available: https://doi.org/10.1145/
3192366.3192410

R. Shin ef al., “Synthetic datasets for neural program synthesis,” in
Proc. Int. Conf. Learn. Representations, 2019. [Online]. Available:
https:/ /openreview.net/forum?id=ryeOSnAqYm

M. Balog, A. Gaunt, M. Brockschmidt, S. Nowozin, and D. Tarlow,
“DeepCoder: Learning to write programs,” in Proc. Int. Conf.
Learn. Representations, 2017, pp. 1-20.

J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu, “A novel
neural source code representation based on abstract syntax tree,” in
Proc. IEEE[ACM 41st Int. Conf. Softw. Eng., 2019, pp. 783-794.

U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “Code2vec: Learn-
ing distributed representations of code,” in Proc. 46th ACM SIG-
PLAN Symp. Princ. Program. Lang., 2019, pp. 1-29. [Online].
Available: http://doi.acm.org/10.1145/3290353

L.Mou, G. Li, Z. Jin, L. Zhang, and T. Wang, “TBCNN: A tree-based
convolutional neural network for programming language proc-
essing,” in Proc. 30th AAAI Conf. Artif. Intell., 2016, pp. 1287-1293.

http:/ /github.com/

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]
[72]

[73]

[74]
[75]

M. Allamanis, M. Brockschmidt, and M. Khademi, “Learning to rep-
resent programs with graphs,” CoRR, 2017. [Online]. Available:
http:/ /arxiv.org/abs/1711.00740

Codeforces, 2019. [Online]. Available: http:/ /codeforces.com/
HackerEarth, 2019. [Online]. Available: https:/ /www.hackerearth.
com/

G. S. Manku, A. Jain, and A. D. Sarma, “Detecting near-duplicates
for web crawling,” in Proc. 16th Int. Conf. World Wide Web, 2007,
pp. 141-150. [Online]. Available: http://doi.acm.org/10.1145/
1242572.1242592

V. L. Levenshtein, “Binary codes capable of correcting deletions,
insertions, and reversals,” Soviet Phys. Doklady, vol. 10, no. 8,
pp- 707-710, 1966.

D. Liu and D. Gildea, “Syntactic features for evaluation of
machine translation,” in Proc. Workshop Intrinsic Extrinsic Eval.
Measures Mach. Transl. Summarization, 2005, pp. 25-32.

S. Karaivanov, V. Raychev, and M. Vechev, “Phrase-based statisti-
cal translation of programming languages,” in Proc. ACM Int.
Symp. New Ideas New Paradigms Reflections Program. Softw., 2014,
pp. 173-184. [Online]. Available: http://doi.acm.org/10.1145/
2661136.2661148

S. Bird, E. Klein, and E. Loper, Natural Language Processing with
Python. Sebastopol, CA, USA: O'Reilly, 2009. [Online]. Available:
http:/ /www.oreilly.de/ catalog /9780596516499 /index.html
Natural language toolkit, 2020. [Online]. Available: https://github.
com/nltk/nltk/

autopep8, 2018. [Online]. Available: https://pypi.org/project/
autopep8/

P. M. Lerman, “Fitting segmented regression models by grid
search,” Appl. Statist., vol. 29, no. 1, pp. 77-84, 1980.

Pylint, 2018. [Online]. Available: https:/ /www.pylint.org/
Python documents, 2019. [Online]. Available: https:/ /docs.python.
org/3/library/exceptions.html

Hui Liu received the BS degree in control science
from Shandong University, China, in 2001, the MS
degree in computer science from Shanghai Univer-
sity, China, in 2004, and the PhD degree in com-
puter science from the Peking University, China, in
2008. He is a professor with the School of Com-
puter Science and Technology, Beijing Institute of
Technology, China. He was a visiting research fel-
low in centre for research on evolution, search and
testing (CREST) at University College London,
United Kingdom. He served on the program com-

mittees and organizing committees of prestigious conferences, such as
ICSME, RE, ICSR, and COMPSAC. He is serving as associate editor for
the IET Software, and guest editor for the Empirical Software Engineering
and the Journal of Systems and Software. He is particularly interested in
deep learning-based software engineering, software refactoring, and soft-
ware quality. He is also interested in developing practical tools to assist
software engineers.

Minzhu Shen received the BS degree from the
information management and system program,
Northwest A&F University, China, in 2018. She is
currently working toward the master’'s degree in
the School of Computer Science and Technology,
Beijing Institute of Technology, China, under the
supervision of Dr. Hui Liu. Her current research
interests include software testing and Al-based
software engineering.

dJiaqgi Zhu received the BS degree from the Col-
lege of Information Engineering, Northwest A&F
University, China, in 2017. She is currently work-
ing toward the master’'s degree in the School of
Computer Science and Technology, Beijing Insti-
tute of Technology, China, under the supervision
of Dr. Hui Liu. Her current research interests
include code generation and software evolution.

Authorized licensed use limited to: Peking University. Downloaded on January 05,2025 at 18:12:53 UTC from IEEE Xplore. Restrictions apply.

http://github.com/danielyule/hearthbreaker/
http://github.com/danielyule/hearthbreaker/
http://doi.acm.org/10.1145/3178876.3186081
https://stackoverflow.com/
https://stackoverflow.com/
http://doi.acm.org/10.1145/2594291.2594321
https://doi.org/10.24963/ijcai.2018/578
https://doi.org/10.24963/ijcai.2018/578
http://dl.acm.org/citation.cfm?id=2337223.2337322
http://dl.acm.org/citation.cfm?id=2337223.2337322
http://doi.acm.org/10.1145/2786805.2786849
http://doi.acm.org/10.1145/2786805.2786849
http://doi.acm.org/10.1145/2884781.2884841
https://openreview.net/forum?id=Skp1ESxRZ
https://openreview.net/forum?id=Skp1ESxRZ
https://doi.org/10.1145/3208071
https://www.microsoft.com/en-us/research/publication/neuro-symbolic-pro gram-synthesis-2/
https://www.microsoft.com/en-us/research/publication/neuro-symbolic-pro gram-synthesis-2/
https://www.microsoft.com/en-us/research/publication/neuro-symbolic-pro gram-synthesis-2/
https://doi.org/10.1145/3062341.3062351
https://doi.org/10.1145/3192366.3192382
https://doi.org/10.1145/3192366.3192410
https://doi.org/10.1145/3192366.3192410
https://openreview.net/forum?id=ryeOSnAqYm
http://doi.acm.org/10.1145/3290353
http://arxiv.org/abs/1711.00740
http://codeforces.com/
https://www.hackerearth.com/
https://www.hackerearth.com/
http://doi.acm.org/10.1145/1242572.1242592
http://doi.acm.org/10.1145/1242572.1242592
http://doi.acm.org/10.1145/2661136.2661148
http://doi.acm.org/10.1145/2661136.2661148
http://www.oreilly.de/catalog/9780596516499/index.html
https://github.com/nltk/nltk/
https://github.com/nltk/nltk/
https://pypi.org/project/autopep8/
https://pypi.org/project/autopep8/
https://www.pylint.org/
https://docs.python.org/3/library/exceptions.html
https://docs.python.org/3/library/exceptions.html

LIU ET AL.: DEEP LEARNING BASED PROGRAM GENERATION FROM REQUIREMENTS TEXT: ARE WE THERE YET?

Nan Niu received the BEng degree in computer
science and engineering from the Beijing Institute
of Technology, Beijing, China, in 1999, the MSc
degree in computing science from the University of
Alberta, Edmonton, AB, Canada, in 2004, and the
PhD degree in computer science from the Univer-
sity of Toronto, Toronto, ON, Canada, in 2009. He
is currently an associate professor with the Depart-
ment of Electrical Engineering and Computer Sci-
ence, University of Cincinnati, Cincinnati, Ohio.
His current research interests include software
requirements engineering, information seeking in software engineering,
and human-centric computing. He was a recipient of the U.S. National Sci-
ence Foundation Faculty Early Career Development (CAREER) Award,
the IEEE International Requirements Engineering Conference’s Best
Research Paper Award, in 2016, and the Most Influential Paper Award, in
2018.

Ge Li received the PhD degree from Peking Uni-
versity, China, in 2006, and had been a visiting
associate professor at Stanford University, Stan-
ford, California, in 2013-2014. He is an associate
professor with the Department of Computer Sci-
ence and Technology, School of EECS. He is cur-
rently the deputy secretary general of CCF
Software Engineering Society and the founder of
the Software Program Generation Study Group.
He was one of the earliest researchers engaged in
the study of the computer program language model
based on deep neural network, and the study of end-to-end program code
generating techniques. His current research mainly concerns applications
of probabilistic methods for machine learning, including program language
process, natural language process, and software engineering.

1289

Lu Zhang received the both BSc and PhD degrees
in computer science from Peking University, China,
in 1995 and 2000 respectively. He is a professor
with the School of Electronics Engineering and
Computer Science, Peking University, P.R. China.
He was a postdoctoral researcher in Oxford
Brookes University and University of Liverpool,
United Kingdom. He served on the program com-
mittees of many prestigious conferences, such as
FSE, OOPSLA, ISSTA, and ASE. He was a pro-
gram co-chair of SCAM2008 and a program co-
chair of ICSM17. He has been on the editorial boards of the Journal of Soft-
ware Maintenance and Evolution: Research and Practice and the Software
Testing, Verification and Reliability. His current research interests include
software testing and analysis, program comprehension, software mainte-
nance and evolution, software reuse, and program synthesis.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: Peking University. Downloaded on January 05,2025 at 18:12:53 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

